socket
(mobile

ScanAPIReference

Release

March 18, 2015

Socket ScanAPI| Reference

4/2014 Document# 6410 -00319 C

CoPYRIGHTNOTICE

Copyright © 2014 Socket Mobile, Inc. All rights reserved.

Socket, the Socket logo, Battery Friendly, SockluetoothCordless Hand Scanneand SocketScan are trademarks or
registered trademarks of Socket Mobile, InBluetoothand the Bluetoothlogos are registered trademarks owned bluetooth
SIG, Inc., U.S.A. and licensed to Socket Mobile, Inc. All other brand and product names arertraidis of their respective
holders.

The SockeBluetooth Cordless Hand Scanner includes technology licensed under United States Patent Numbers 5,902,991,
7,429,000 B1 and D526,320 S.

Reproduction of the contents of this manual without the permission of Siket Mobile is expressly prohibited. Please be aware
that the products described in this manual may change without notice. Feel free to contact Socket Mobile at:

Socket Mobile, Inc.

39700 Eureka Drive Newark, CA 945604808, USA
+1-510-933-3000

USA/Canala Toll-free: 1-800-552-3300
http://www.socketmobile.com/contact

Other than the above, Socket Mobile can assume no responsibility for anything resulting from the application of information
contained inthis manual.

Please refrain from any applications of the Sock&luetooth Cordless Hand Scanner that are not described in this manual.
Please refrain from disassembling théluetoothCordless Hand Scanner. Disassembly of this device will void the product
warranty.

You can track new product releases, software updates and technical bulletins by visiting the Socket Mobile website at:
http://www.socketmobile.com .

© 2014 SocketMobile, Inc. 2/184

http://www.socketmobile.com/contact
http://www.socketmobile.com/

Socket ScanAPI| Reference

Table of content s

COPYRIGHTNOTICE 111ttt tte it et e e ettt e e e e e et e e et e e e et e e e et e ea e ea e en e e e ananeeenns 2
1 Scanner CONNECLION OVEIVIEW.ccuuuieeeuiieeeeiseeeeeeteeeeeinneeeenneeeeenanaeeesnnaaaees 7
1.1 Scanner connection INfOrmMation.............c.uoviiiiiiiieeeeiir e 7
P S Tox= 1 VY I [T 0T §Tod 1 o] o P 10
3 SOMtSCAN FEAIUIE.ceui e e s 11
3.1 IOS rEQUIrEMENTS. ... eeieeiii ettt e e e e e et e e e e e aba e e e e eeneas 11
3.2 ANdroid reqUIrEMENES.cuuui i eeiieiit e e ettt eeeeeeeab e e e eeees 12
N O 0T o7 =T o | ST PRTPTSPPPP 13
4.1 SCANAPI ODJECT. ...euiii et 13
4.2 DEVICE ODJECT. ... 13
4.3 SCANODJECL. ...t 14
4.4 USING SCANAPL.....uiiie e 14
4.5 ScanAPI CONfIQUIALION........cuuuuiieiiiiiii e 15
4.6 GElOr SEL A PrOPEITY ... cieei ettt ettt e e e e e e e e 15
4.7 Example of sending @ command...............uiiieiiiiiiimiineeeeee s 16
4.8 Handling asynchronous events or completion events.............cccccceeeene. 25
e T =4 011 = U4 o] o P 26
5 ScanAPI Helper (available for Java, C# and Objective C)...........cceevvvviinnennn. 26
5.1 Handling the ScanAPI Helper notifications..............covviiiiiiiiiciineeeeeeens 27
5.2 Set ScanAPI Helper notification.............c.cooieiiiiii e, 34
5.3 Open SCaNAPHEIPE...... oo 34
5.4 Close SCaNAPI HEIPE......coeuiieieee e 34
5.5 SCANNET @ITIVAL.....c.uuiiiii e 34
5.6 Decoded data Notification.............ccoevvuiiiiiiiiees e 35
5.7 SCANNEI FEMOVAL......cciiiii e e e e e e eaaans 35
5.8 Isthere a connected SCaNNEr...........oviviiiiiiiiiiiiee e e 35
5.9 Getthe list Of SCANNErS........ccovviiiiiii e 36
5.10 No Device Connected iteM...........uiviiiiiiiiiieicee e 36
I |] = [0 =T o= (o] o PP 36
G R O @ e Y =Y 1 o o 1 36
N - Y- T =T £ (o] o PPN 36
R T O - =T £ (o o P 37
6.4 Objective C Xcode iNtegration..........c.cuuiveiiuiieiieeii e e e eennans 38
7 ReCOMMENUALIONS.iiiiii e e e e e e e e et eeaaanas 39
A% R C 1= 1= Y P 39
42 A 4 T | {0 (o 1R 39
A T [1S TSR PPRPSRPPY 40
8 Device Connection and Disconnection proCess..........cccceeevvvveeeeevnvnneennnnn.... 40
8.1 Initial CONNECLIONuiiiiiii e e e 40
8.2 Subsequent CONNECHION.........ccciiiiii e e e e e 41
8.3 RECONNECHION.......uiiiii e e e et e e 41
S J A B 1 Toto] o =T o1 1 o o 1R P 41
8.5 ROAMING.......iiiiiiiii e enee A

© 2014 SocketMobile, Inc. 3/184

Socket ScanAPI| Reference

8.6 Socket EZ Pair featUre............ovivieiiiiiiiiieieeeeie e eeeeenin e e 42
S B B - = W = o {11 T PPN 42
0.1 PIOfIlE e 43
S I (1o o [T TP PPP PR PUPPPPPPPPTIN 44
0.3 OPEIALIONS. ...ttt ettt e 45
9.4 IMPOIEEXPOIT. ...ttt e e e 50
10 Specific scanner CONfIQUIALIONS.uuuiieiiiiiii e 52
10.1 AdaptiVe SCANMING......ceeuiiiieeiieiii e et e e e e e e e e e eeeens 53
10.2 SCAN ANQIE ... 53
10.3 Code 39 Length confIgQUuration.............ccuuuuiieeiieemiiiiiie e 54
10.4 Interleaved 2 of 5 Length configuration..............ccccceeeiiiineeiiiiiiineeeeeens 56
ORI U o @ (0] ¢ o 1= | 58
0 R o U Tod 1 o 59
11,1 OPEN FUNCHOM ..ottt e e aaas 59
11.2 ClOSE FUNCHON. ..ciittieeeie et e e e e e e e et e e e e enneeeeed 64
5 S 1= [VX1 o o 66
I3 T U] o 1 o PP 41
00 T VAV 7>V B] o 1o T 75
11.6 Release FUNCHON........couu e e e 78
12 SCANODJECL....uuiiieee e 80
13 Asynchronous messages and EVENIS........ccouuuuuiiiieieeiiiniin e e eeeiiee e eeeeens 81
IR O B TV oo AN 4 17 | P 81
13.2 DeVICE REMOVAL.......oiiiiiiiiiiie ettt 81
R TG B =T 1 11 0 = L= PSPPI 81
R 1= A 0] 1 0]] =] (= 81
R R T C 1= o 0o] 4] 0] =] (= 82
13,6 EVENIS .o 82
14 INtroduction t0 PrOPEerti€Sccevunieiiiii e e e e e e 87
15 ScanAPI ObJeCt PrOPEITIES ...c.uu i e e 38
15.1 Property kSktScanPropldADOIt...........coovviiiiieiiie e 38
15.2 Property kSktScanPropldVersion............ccoeevvuviiieviieien e 89
15.3 Property kSktScanPropldinterfaceVersion.............cccceeveveviiieeeeeiieeenns 91
15.4 Property kSktScanPropldConfiguration..............ccccooevviiiieeeiiiineecennnnn, 92
15.5 Property kSktScanPropldDataConfirmationMode................ccccceeeeeees 94
15.6 Property kSktScanPropldDataConfirmationAction...............cccceeeeunnn.n. 96
15.7 Property kSktScanPropldMonitorMode.............ccccoeveeiiiiiieeeriiieeeeeenn, 97
15.8 Property kSktScanPropldSoftScanStatus.............cccvevveiieeciiieeeiineeeen, 99
15.9 Property kSktScanPropldDataEditingProfile..............cccccooevveeeeeennnn. 101
15.10 Property kSktScanPropldDataEditingCurrentProfile.......................... 101
15.11 Property kSktScanPropldDataEditingTriggerSymbologies................ 102
15.12 Property kSktScanPropldDataEditingTriggerMinLength.................... 103
15.13 Property kSktScanPropldDataEditingTriggerMaxLength................... 104
15.14 Property kSktScanPropldDataEditingTriggerStartsBy....................... 105
15.15 Property kSktScanPropldDataEditingTriggerEndsWith...................... 106
15.16 Property kSktScanPropldDataEditingTriggerContains...................... 106
15.17 Property kSktScanPropldDataEditingOperation..............c.ccccevveeennn... 107

© 2014 SocketMobile, Inc. 4/184

Socket ScanAPI| Reference

15.18 Property kSktScanPropldSymbologies............ccooviviiiiiiiieiniiieeciieeees 108
16 DevVvice ODJECt PrOPEItIESciiiiiiii e 109
16.1 Property kSktScanPropldVersionDevViCe............cccouuviiiiieiieieiiiiinneen. 109
16.2 Property kSktScanPropldDeviCeTYPEe.........uvvieiiieiiiiieeeeeeeeeii e 109
16.3 Property kSktScanPropldDeviCeSpPecCifiC..........ccevvevviiiiieiieeeiiiiiieeeen 111
16.4 Property kSktScanPropldSymbologyDevice..............ocoevviiiiinieneeinens 112
16.5 Property kSktScanPropldTriggerDevViCe.............ccoeuvviiiiieiieeeiiiiiinneee. 115
16.6 Property kSktScanPropldApplyConfigDevice..........cccccceivieeiiiiinnnnnnn. 116
16.7 Property kSktScanPropldPreambleDeVice...........cccooveveviiiiiiinceneennnnn. 116
16.8 Property kSktScanPropldPostambleDevice............cccceiveveiiiievenennnnnn. 117
16.9 Property kSktScanPropldCapabilitiesDevice............cccccevveeiieiiiennennnn. 117
16.10 Property kSktScanPropldChangeldDevice............cccccovvieiiiiiinninnnnennn. 119
16.11 Property kSktScanPropldFriendlyNameDevice.............ccooeevvviiinnnnnnn. 120
16.12 Property kSktScanPropldSecurityModeDevice...............cccoevvviiiennnnn. 123
16.13 Property kSktScanPropldPinCodeDeViCe..........ccocevvuiieiiiiieereeeiieeees 124
16.14 Property kSktScanPropldDeletePairingBondingDevice..................... 124
16.15 Property kSktScanPropldRestoreFactoryDefaultsDevice.................. 125
16.16 Property kSktScanPropldSetPowerOffDevice.........ccccovevveviieveennnnnnn. 125
16.17 Property kSktScanPropldButtonStatusDeVicCe.............ccceevvvenneereennnnnn. 126
16.18 Property kSktScanPropldSoundConfigDevVviCe.............ueviieiiiiiiennnnnn. 127
16.19 Property kSktScanPropldTimersDevicCe...........coouvvvuiiiieiiieeieiiiinneeee 130
16.20 Property kSktScanPropldLocalAcknowledgmentDevice.................... 131
16.21 Property kSktScanPropldDataConfirmationDevice..............c.cccceee... 132
16.22 Property kSktScanPropldBatteryLevelDevice...........cccccoevvvvieeveennnnnn. 134
16.23 Property kSktScanPropldLocalDecodeActionDevice......................... 134
16.24 Property kSktScanPropldBluetoothAddress..........ccooevvviieviiiieeeeennnn. 135
16.25 Property kSktScanPropldStatisticCountersDevice............cccceeevvvvnnnn.. 136
16.26 Property kSktScanPropldRumbleConfigDevVvice............ccccoeveveviieeeenns 139
16.27 Property kSktScanPropldProfileConfigDeVvice..........cccccoeevvviieeviennnnnn. 141
16.28 Property kSktScanPropldDisconnectDevViCe...........c.cceevveeveiieeneennnn. 142
16.29 Property kSktScanPropldDataStoreDevViCe............ccceevevevviieeeeennnnnnn. 143
16.30 Property kSktScanPropldNotificationsDevVicCe............cccceeeevvieeveennnnnn. 144
16.31 Property kSktScanPropldConnectReasonDevVice.............cccceeeeeevnnnn. 145
16.32 Property kSktScanPropldPowerStateDevice.............cccvveeviiiieeeeennnn. 146
16.33 Property kSktScanPropldStartUpRoleSPPDevice..............cccceeeeeee. 147
16.34 Property kSktScanPropldConnectionBeepConfigDevice................... 148
16.35 Property kSktScanPropldFlashDeVicCe............ccooveviiiiieeeiiiiieccieeeees 149
16.36 Property kSktScanPropldOverlayViewDevVice............cccccoeevvvvieeeeennnn. 150
16.37 Property kSktScanPropldStandConfigDevice............ccocoevvivieeennnnnnn.. 153
17 ScanAPI Error handling and definitions..............ccoeviiiiinieeeeiec e, 154
0 R =Y 1 o g oo o [P 157
18 Symbologies ENUMEration...........cccuuiiiiiiiiieeieei e eeeea e 159
19 Data confirmation fEatUre...........coooviiiiiiii e 160
20 Sample handling asynchronous events of ScanAPRl..............cccoeeeiiiennnn.n. 162
21 SktScanAPIOwnership (available for Java platforms).............ccococeviienen. 167
211 CONSITUCTON. .. ettt e ettt et e e e e e e e e e e e e e e eeaaaees 168

© 2014 SocketMobile, Inc. 5/184

Socket ScanAPI| Reference

FZ A =T o 1] (=T PR 170
P2 G B U1 =T |51 (] PP 171
21.4 aSKFOrOWNEISNIP....coiiiiiiieiciiii e e 172
215 ClaiMOWNEISNIP.....uiiieiiiii e 173
21.6 releaseOWNEISNIP. ..o 175
21.7 Notification onScanApiOwnershipChange...........ccccoooviiiiiiiieenieeeenns 176
22 SOMtSCAN fEALULE.....coiiiiiii e 179
221 L LST= T =P 179
22.2 1OS INEEOIAtION. ...ceeeiii ettt e e 180
22.3 ANAroid INtEQIatiONL.......ccuuueeee it e e 181
P B o 1151 (o] U PP 181

© 2014 SocketMobile, Inc. 6/184

Socket ScanAPI| Reference

1 Scanner connection overview

This SDK is designed for use with the Socket CHS 7 series scanners on several
OS platforms including Apple iOS, Android, Windows Desktop and Windows
Mobile 6.x. The intended usage is to develop a native application that includes
built in support for the Socket 7 series scanners. This SDK gives the full
programmatic access to a connected 7 series scanner to customize the scanner
Symbology and data support, manages scanner feedback messages and
functions or modifies default scanner behavior.

Before beginning the process of implementing the ScanAPI into an application it
is first recommended reading through this intro regarding the connection process

of the scanner as this might answer many questions in regards to how an
application communicates with the scanner.

1.1 Scanner connection information

The connection information below applies mainly to the Android and Windows
operating systems.

For the iOS platform the connection is simplified based on the host iOS handling

the connection. It is recommended to refer to the readme.rtf file from the ScanAPI
SDK DMG install that is part of the ScanAPI iOS SDK.

1.1.1 Scanner HID mode

The CHS 7 series scanners are shipped by default in HID profile mode and will
display the following friendly name:

For the 7Xi/7Qi series:

Socket 7Xi [xxxxxx] (where x6s are the | ast
scanner)

Or for the 7Ci/Mi/Pi & 8Ci/8Qi series:

Socket CHS [XXxXxX]

In this mode the scanner functions as a standard HID keyboard device and can

be tested in this mode as if it is a keyboard.

It will NOT work with an application using ScanAPI.

NOTE: if the scanner in HID mode is discovered and tested it may cause conflicts

© 2014 SocketMobile, Inc. 7/184

Socket ScanAPI| Reference

with discovering and using the scanner in SPP mode due to the fact that some
devices will cache the name and service information of the device.

Socket recommends that the pairing information is removed by deleting or
unpairing the device using the host device Bluetooth manager before connecting
the scanner in a different mode.

1.1.2 SPP Mode for the SDK

The SPP Mode is the required mode for the Scanner to be able to communicate
with an application using ScanAPI.

The SPP Mode has 2 configurations. One configuration called Acceptor, and
another called Initiator.

In Acceptor configuration, the scanner is discoverable and connectable and
basically waits for a host to connect. The scanner indicates that it is in this mode
by slowly flashing the blue LED.

In Initiator configuration, the scanner knows the Bluetooth address of the host to
connect to. Each time the scanner is powered on in this configuration, it will try to
connect to the host corresponding to the Bluetooth address it has saved.

The scanner indicates that it is in this mode by quicly flashing the blue LED. The
scanner stays in this mode until it successfully connects to the host or after a 2
minutes timeout occurs, which it will signal by doing a long beep. At this point the
scanner can be powered off and on to retry to connect to the host.

1.1.3 Initial connection to iOS host or to any host for a 7Ci,M and P
series

The process of connecting a scanner to an iOS host device or a 7Ci, M and P

scanner to any host device is the same and can be summarized to these simple

steps.

Step 1: The scanner must be in Acceptor mode.

For an iOS device, the scanner can be in configured in Acceptor mode by
scanning a barcode t hGQOSACGEPTARhe val ue of
00000000fAOX/EQWBQIior A#FNBOOFA4O0 0/NIiP#BOGIIBR.OT a

For any other host Device (not iOS) the scanner can be configured in Acceptor
mode by scanning a barcode that has the
7Ci/Mi/Pi/8Ci/8Qis e r i e#FNC SPP AQGCEPTOR 0000000000#0 f or a
7Xi/7Qi/8QI series scanner.

Note: the 8Qi and 7Xi/Qi can read either the 1D or 2D configuration barcodes.

© 2014 SocketMobile, Inc. 8/184

n#F
7 Ci

val u

Socket ScanAPI| Reference

The barcode can be a 2D barcode for a 7Xi/7Qi/8Qi scanner only.

Step 2: Discover and pair the scanner from the host.

By using the Bluetooth settings of your host device, discover and pair the

scanner.IfaPINcodei s request use A00000 (4 zeros) at
complete.

For iOS host device this is the final step. The scanner can now be used by the

application using ScanAPI.

Step 3: (For all hosts but iOS devices) Instruct the scanner to connect back to the
host by using Socket EZ Pair application.

Once the scanner is configured correctly, it will always try to reconnect back to
the host each time it is powered on or back in range.

1.1.4 Simplified connection process to any host but iOS devices

There is a simplified process that can be used when the host Bluetooth device
address is known either by printing out barcode or by using 7xi/7Qi with Socket
EzPair.

This process isndét possible for 1 OS device a
Bluetooth addressandthe i OS d e v autherize aw@amnérto connect and
pair unless the Bluetooth Settings page is displayed on the screen.

The following steps for 7Xi/7Qi/8Qi series is as simple as scanning a 2D barcode

that has the value: A#FNCx#d Pwil tNH TX XAXTXORX XX XX XX XX
replaced by the host Bluetooth address, with letters in upper case, or by scanning

out of the Socket EZ Pair screen the 2D barcode.

The same principle for 7Ci/Mi/Pi/8Ci/8Qi series scanner, by scanning a Code 128
barcode thathasthev a |l u e : A#FNI XXXXXXXXXXXX#0 with XX
the host Bluetooth address. NOTE the 7Ci/Mi/Pi/8Ci/8Qi series scanners should

be first and only once set#FINBOSPFROMDODe 0b Y ode
128 barcode.

1.1.5 Connection Process integration

For the 7Ci/Mi/Pi/8Ci series scanners there are two methods that canbe used to
configure the scanner to be an initiator to the host device:

Method 1:

© 2014 SocketMobile, Inc. 9/184

Socket ScanAPI| Reference

Implement the 1D EZ Pair process in your app to select a pre-discovered
scanner and configure it to be an initiator to the host device. This process is
explained in paragraph 8.6 Socket EZ Pair featee.

Method 2:

-Manually create an EZ Pair barcode with each host system Bluetooth address
so that the 1D scanner simply needs to scan the barcode to configure it as an
Initiator to the host device

For the 7Xi/7Qi/8Qi series scanners you can just present the EZ pair barcode as
part of your application setup process.

Either way once that part is done your app just needs to have ScanAPI initialized
and waiting to receive the incoming connection of the scanner.

2 ScanAPlIntroduction

ScanAPI deliversan application programming interface (API) to control and
configure SocketBluetooth Cordless Handled Scanne (CHS)connected to a host
computer.

A ScanApi Helper component is providedof Objective C, C#rad Java platformso
integrate more easily ScanAPI into an application. ScanAPI Helper handles the
asynchronous events through callbacks, angives an easyvay to manipulate the
asynchronous commands an application can send to a CHS by providing a callback
mechanism that is invoked when the command response is received.

A CHS has severall properties that can be retrieved, modified or actioned.
CHS propertiescan be by example a symbology state, its friendly nama, triggering
a scan.

This API is asynchronousThe property operation is therefore a2-step process. The
application sends a propertyget or setcommand and ifthis is successful, a property
get or setcomplete event is received with the CHS result of that property command.

At any time aCHScan sendeventsto the host that are retrieved using the same
mechanism as the completion of the propertypperation.

ScanAPI has only one entry point to regve these asynchronous events making it
very easy to manage.

The other benefit of this asynchronous API is to be able to drive a scanner from a

graphical user interface (GUI) application without danger of blocking the user
interface while waiting for a lengthy operation to complete.

© 2014 SocketMobile, Inc. 10/184

Socket ScanAPI| Reference

3 SoftScan Feature

The SoftScan is a feature that makes the host device bdiltcamera acting as a
barcode scanner. This feature is implemented usin@S Soft scanner feature builtin
in the 10S7.0 version of the OS and withthird -party technology on Android that
requires and therefore the developer should comply to the thirdparty license
agreement.

Currently the SoftScan feature is available dyponiOS and Android based devices.

This feature is not activated by default.n order to activate it, the application should
set the ScanAPI kSktScanPropldSoftScanStatuk&ktScanSupported, and then set
the same property to kSktScanEnabledSoftScan

As soon as ScanAPI is initialized and SoftScan is enabled, a SoftScanner device
arrival event is generated.

A device removal event is generated when the SoftScan feature is disabled by using
the same ScanAPI property with its value sets to kSktScanDisableSoftScan.

4EA 31 EO3AATTAO AT AOT 60 OODPDPI wbuméntdnd OE A
returns a ESKT_NOTSUPPORTED error for them.

An application can turn off this feature by setting the property
kSktScanPropldSoftScanStatus to kSktScanNotSupported. This will return an error
ESKT_INVALIDOPERATION if the SoftScan is not disalfilest

3.1 iOS requirements

The ScanAPI library for iOSupports i0S6.0 and higher of the OS. The SoftScan
feature is supported only on device running iOS7.0 or higher. Therefore if an
application tries to enable the SoftScanner an error ESKT_NOTSUPPORTEDbwiil
returned when the iOS version is not iOS7.0 or higher.

In the original ScanAPNersion the only required frameworks is:
- ExternalAccessory.framework

Since SoftScan is now part of ScanARIpther frameworks are now required and
they are:

- AVFoundaton.framework,
- AudioToolbox.framework

© 2014 SocketMobile, Inc. 11/184

POl E

Socket ScanAPI| Reference

Last, in order to have the SoftScan making a beep, the app resources bundle should
contain a wav file named softscanbeep.wav. One is provided with the SDK but it can
be replaced by anything other wav file as long as has the same file name.

y £ OEEO ZAEI A EO 110 POAOGAT O OEA 31 £O03AAI

successfully decoded.

3.2 Android requirements

The overlay view isa requirement for the SoftScanner in order to display the video
output in the application. This is implemented through an Activity that must be
added to the application manifest. This activity is defined as
com.SocketMobile.ScanAPIl.SoftScanActivity.

Here are the lines that should be added to the application manifest inside its
application tagor service tag:

<activity

AT AOiT EAdT Al AE6Ai i 831 AEAO-T AEI A8B83AAT 1 0) 8
AT AOT EAQAT TEEQ#EATQAOEéEAUATAOA(EAAATgI
ATAO1EAqOAoAAT/OEATOAOETiééiATAOAADAO

AT AOT EAQOEAT ARGFALIAM AIBEAYEDIIA" AO6 TE€E

SoftScan feature uses third party application called Barcode Scanner (ZXing)
application, that needs to be installed on the device and can be found through the
Google Play Store as free download.

It is recommended the applicationusing ScanAPto check first the presence ofhis
third party application prior offering the SoftScan feature to the user.

The application context must be passed to the SoftScan by using the
kSktScanPropldOverlayViewDevice property. This property accépan object as
parameter. This object should bédashMap that contains the context of the
application at the key specified by kSktScanSoftScanContext.

Here are few lines showing how to pass the application context to SoftScan:

Map<String,Object> overlay=new HashMap<String,Object>();
overlay.put(ISktScarProperty.values.softScanContext.kSktScanSoftScanContext, my
Context);

scanApiHelper.postSetOverlayViedgvicelnfo,overlay);

These few lines can be added in the Device Arrival if the device is a SoftScan device.
Once these requirements are met, the applitan can trigger a scan by using the
property kSktScanPropldTriggerDevice with kSktScanTriggerStart as parameter

and by providing the SoftScan device information.

The trigger operation can return the following errors:

© 2014 SocketMobile, Inc. 12/184

I £O0
EAT

Socket ScanAPI| Reference

ESKT_UNABLEOPENDEVIGE?): For somereason SoftScan was unable to launch
the Barcode Scanner (ZXing) applicatiorcheck if the SoftScan activity has been
added in the application manifest file.

ESKT_NOTSUPPORTEDRSY): The SoftScan feature is not supported on the host,
check if the BarcodeScanner (ZXing) application is installed on the device.

ESKT _OVERLAYVIEWNOTSE® ftqqd 4 EA 31 £#03AAT OANOEOAA
set prior triggering the scanner, check if the property

kSktScanPropldOverlayViewDevice has been set with the applicaticontext prior
triggering the SoftScan device.

4 Concept
This APIdefines3 main objects: ScanAPI objecDevice objectand ScanObject

4.1 ScanAPI object
This object controls the API.

In order to use ScanAPI, this object must be opened first and this tirgpen
initializes ScanAPI. The handle returned from this open must be used for any
subsequent ScanAPI operatios

All asynchronous events are received through this ScanAPI object.
The ScanAPI object has few properties that can be retrieved or modified

When an application is ready to use ScanAPl, it can open it by usthg ScanAPI
Open API with no device name irthe parameter.

4.2 Device object

The Device object represents a CHS. In order to use and receive events from a CHS,
its corresponding Device obgct must be opened.

The handle returned from opening a Device object is used by the application to
retrieve or modify a particular property of the CHS.

ScanAPI notifies the application each time a Device Object is available by sending a
Device Arrival event with a UUID identifying the Device Object. The application can
open this particular Device Object by specifying this UUID in the ScanAPI open API.

If a CHS disconnects from the host, a Device Removal is sent by ScanAPI to the

application to indicate that the matching Device Object is no longer valid and the
application should close it if it has it opened.

© 2014 SocketMobile, Inc. 13/184

i OA

Socket ScanAPI| Reference

4.3 ScanObject

The ScanObject iadata placeholder used for exchanging information beteen the
application and the CHS or ScanAPI object.

A ScanObjetcholds 2 kinds of information: a propertyand a message.

When a ScanObiject is sent from the application to ScanAPlI, only the property
information in ScanObject is relevant.

When a ScanObiject is received from ScanAPI by the application, the message
infor mation is always relevant and depending on the message received the property
information might be relevant.

ScanAPI creates a ScanObject each time it receives an asynchronous event, and in
this case the application must release this ScanObject by calliagcanAPrelease
API.

The application can create a ScanObject to send specific information to either a
Device or ScanAPI. In this case the application is responsible for releasing th
ScanObiject correctly.

4.4 Using ScanAPI

An application has two thingsto do in order to setup ScanAPI correctly. It needs first
to open ScanAPI by specifying no name in the open parameter API, and then starts
either a timer or a thread to consume the asynchronous events coming from
ScanAPl.

When a CHS connects to the hoSicanAPI sends a Device Arrival evetd the
application through the applicationd canAPI consumelogic, usually a timer loop
calling into ScanAPI.

The Device Arrival event contains an UUID identifying a Device Object that
represents a CHS. The applidaih can open the Device Object by specifying this
UUID in the ScanAPI open function.

Once the Device Object is opened, the application can retrieve or modify the CHS
properties by using the get property or set property API.

© 2014 SocketMobile, Inc. 14/184

Socket ScanAPI| Reference

The get property and set propety APIs are asynchronousThese AP$return
success if the propertyhas beensent correctly to the CHSThe property completion
event is received in the applicatiorconsumer.

If the CHSdoesn't respond to a get or set property within the timeout periodabout
5 seconds), for whatever reason, enatching property getcomplete or setcomplete
event is generated with a timeout error.

Only one propertycan be senft the time to the CHS. An error occurs if a property is
sent prior the completion of the prevbus property operation.

ScanAPI sends a Device Removal event when a CHS disconnects from the host. The
application should close the matching Device Object if it has it opened.

4.5 ScanAPI configuration

ScanAPI has one thread listening on a serial commuaign port. This configuration

can be retrieved or modified by creating a ScanObject and setting its property to
ScanAPI configuration property. The ScanObject can be sent to ScanAPI using the get
property or set property API to respectively retrieve or malify this property.

Modifying the ScanAPI configuration will prompt the listener thread to restart. An
error event is generated if the configuration is incorrect.

Each time the listener starts, a Listener Start event is generated.

ScanAPWwill drop the connection tothe CHS if it was connected during ScanAPI
configuration configuration change.

Please refer to the ScanAPI object properties paragraph for more information.

4.6 Get or Set a property

The ScanAPI object and thBevice object have both propertis that can beretrieved
or altered by using theget property or setproperty API.

The process ofgetting or setting a property is simple. AScanObject holds a Property
field. The application must create a ScanObiject instance and fill its Property member
according to the property of the object it would like to modify.

A property has anlD, adata type, data valueand a context They mustbe specified

accordingly to the characteristics of the property that needs to be retrieved or
modified.

© 2014 SocketMobile, Inc. 15/184

Socket ScanAPI| Reference

The context is dield an application can use for maintaining a context. This context is
returned when a property set or get operation completes.

Once the property member of the ScanObject has been filled correctly, the
application can call theget or set API with the rderence of the object to which it
wishes toretrieve or modify the property.

If the API returns success, the application can wait for the completion to be received
through the wait API.

An application cannot send multiple propertiesto the same object béore the
previous set or get propertyoperation has been fully completedAn error is
generatedduring the Setor GetAPI call if the previous property of the same object
EAOT 60 AAAT AT i bl AOGAA UAOS

The application receives the complete everthrough its ScanAPI consumetogic that
uses the wait API with the ScanAPI object reference.

A ScanObject that is received from ScanAR4s always its message field filled out.

The property complete event isreceived ina ScanObject with a Message ID set to a
Get Conplete ID or Set Complete ID.

The Message has a result fielithat indicatesif the completion of theget or set
property has been successful or not. The Property member of the ScanObject
contains the Property ID matching to the one that has been set, amdcase of
success, the data type and value are filled as expected.

An important point is the fact that a property set or get can fail for many reasons,
and some of them will require the application to retry the operation and some
should just be taken inb consideration. For example, if a property returns

REQUEST TIMEOUArror because the scanner is out of the range for a brief instant
or busy receiving decoded datahaving retry logic can fix this issue.

4.7 Example of s=nding a command
This sectiondescribes the steps for sending a command to a device.
, AO6O Ei ACETA Al Apbl EAAOEITT OOEIT ¢ 3AAT!0) E

For clarity purposes we assume the applicatiorcorrectly handles the connection of
the scanner andhaskept a handle b ScanAPI ando this scanner accessible.

© 2014 SocketMobile, Inc. 16/184

Socket ScanAPI| Reference

The applicationhas ScanAPtonsumerlogic that will receive the messages from
ScanAPI.

This consumer logicuses thewait APIwith the ScanAPDbbject referencethat has
beenpreviously opened with the open API wth NULL as device name.

The button handler creates a ScanObject, and fills the Property part with a property
ID set to kSktScanPropldTriggerDevice, a property type set to byte, and the property
byte value set to kSktScanTrigg&tart as explaired in the paragraph 16.5 Property
kSktScanPropldTriggerDevice .

This button handler usesthe set API to send this property to the device identifiedy
its reference. If the return code of this API is successfuhe button handler can then
disablethe trigger button indicating the trigger is in progress.

The applicationd ScanAPI consumer logithat was waiting for ScanAPI messages by
using the wait APIshould receive the Set Conipte message with the property ID set
to kSktScanPropldTriggerDevice.

The result indicates if the trigger worked. At that point the device should have the
aim light turned on and should be ready to scan and decode data. The application
trigger button canthen beenabled

C++Source code sample:

void CMyAppDIg::OnTriggerButton()
SKTRESULT Result=ESKT_NOERROR;

TSktScanObject ScanObj;
memset(&ScanObj,&izeof(ScanObj));

/'initialize a ScanObject to

/I trigger the device
ScanObj.Property.ID=kSI&canPropldTriggerDevice;
ScanObj.Property. Type=kSktScanPropTypeByte;
ScanObj.Property.Byte=kSktScanTriggerStart;

I set the property with the
/l device handle
Result=SktScanSet(m_hDevice,&ScanObj);

/I check the Set result
if(SKTSUCCESS(Result))
m_TriggerBtn.Enable(FALSE);

else
{
/I display an error message
DisplayError(_T('Unable to trigger: %d"),Result);
}

© 2014 SocketMobile, Inc. 17/184

Socket ScanAPI| Reference

SKTRESULT CMyAppDlg::Consume(
IN SKTHANDLE hScanAPI,
IN unsignedlong ulTimeoutinMilliseconds,
OUT BOOL* pbContinue)

{
SKTRESUL Result;
TSktScanObject* pSktObject=NULL;
Result=SktScanWait(hScanAPI,&pSktObject,ulTimeoutIinMilliseconds);
if(SKTSUCCESS(Result))
{
if (Result'=ESKT_WAITTIMEOUT)
if (pSktObject)
{
switch(pSktObject>Msg.MsgID)
{
casekSktScanMsglDeviceArrival:
Result=HandleDeviceArrival(pSktObject);
break;
casekSktScanMsgldDeviceRemoval:
Result=HandleDeviceRemoval(pSktObject);
break;
casekSktScanMsgldTerminate:
/[we are done with ScanAPI, somebody
/I cal led SktSet with Abort Msgld
if (pbContinue)
*pbContinue=FALSE] quit the for
Tracelnfo(_T('Receive a Terminate Msg,
then shutdown the App receiving\ thread"));
break;
casekSktScanMsgSetComplete:
casekSktScanMsgGetComplete:
Result=
HandleGetOrSetComplete(pSktObject);
break;
casekSktScanMsgEvent:
Result=
HandleAsynchronousEvent(pSktObject);
break;
default:
{

Tracelnfo(_T('unknown Message ID.
received:0x%x"),
pSktObject>Msg.MsgID);

}
break;
}
Il release the ScanObj we received in the wait
SktScanRelease(hScanAPI,pSktObject);
}
}
}
return Result;
}

© 2014 SocketMobile, Inc. 18/184

Socket ScanAPI| Reference

/ called from the ScanAPI consumer logic

/ that is using SktScanWait API

void CMyAppDIg::HandleGgrSetComplete(
IN TSktScanObject* pScanObj

)

switch(pScanObj>Property.ID)

casekSktScanPropldTrigger:
/[ungray out the trigger btn
m_TriggerBtn.Enable(TRUE);
if ISKTSUCCESS(pScan©&jlsg.Result))
{
DisplayError(_T('Failed to trigger: %d"),
pScanObj>Msg.Result);

break;

C# source code:

public partial classForm1 : Form
{
private ISktScanApi_scanApi;
private ISktScanDevice device;
public Form1()
{
InitializeComponent();
InitializeScanAPI();

}

private void buttonTrigger_Click(object sender,EventArgse)
{
/I create a ScanObject instance
ISktScanObjecscanObj =
SktClassFactorycreateScanOlgct();

/I Initialize a ScanObject to

/I Trigger the device

scanObj.Property.ID =
ISktScanPropertypropld.kSktScanPropldTriggerDevice;

scanObj.Property.Type =
ISktScanPropety .types.kSktScanPropTypeByte;

scanObj.Property.Byte =
ISktScanPropertyvaluestrigger.kSktScanTriggerStart;

/I set the property with the device

/I reference
long result = _device.SetPropgy(scanObj);

© 2014 SocketMobile, Inc.

19/184

Socket ScanAPI| Reference

if (SktScanErrorsSKTSUCCESS(result))

{
buttonTrigger.Enabled =false;

}

else

/l display an error message
DisplayError("Unable to tigger: " + result);
}
}

/Il timer to checking and consuming ScanObject from ScanAPI
private void timerScanAPIConsumer_Tickibject sender,

{
ISkiScanObjecscanObj=ull;

EventArgse

/I w ait for ScanAPI ScanObject
long result = _scanApi.WaitForScanObjeat(it scanObj, 10);

if (SktScanErrorsSKTSUCCESS(result))

if (result = SktScanErrorsESKT_WAITTIMEOUT)
{

int propld = scanObj.Msg.ID;

switch (propld)

{

caselSktScanMsckSktScanMsgldDeviceArrival:
result = HandleDeviceArrival(scanObj);
break;
caselSktScanMsckSktScanMsgldDeviceRemoval:
result = HandleDeviceRemoval(scanObj);
break;
caselSktScanMsckSktScanMsgldTerminate:
/[we are done with ScanAPI, somebody
/I called Set with kSktScanPropldAbort
Il as Property ID
result = HandleTerminate(scanObj);
break;
caselSktScanMsckSktScanMsgGetComplete:
caselSktScanMsckSktScanMsgSetComplete:
result = HandleGetOrSetComplete(scanObj);
break;
caselSkiScanMsckSktScanMsgEvent:
result = HandleEvent(scanObj);
break;
}
/I release the ScanObject we received in the wait
_scanApi.ReleaseScanObiéscanObj);

}
}
}

private long HandleGetOrSetCompletéGkiScanObjecscanObj)
{

© 2014 SocketMobile, Inc.

20/184

Socket ScanAPI| Reference

long result = SkiScanErrorsESKT_NOERROR,;
ISkiScanPropertyproperty = scanObj.Property;

switch (property.ID)

{

}

caselSktScanPropertypropld.kSktScanPropldTriggerDevice:

// ungrey out the trigger button
buttonTrigger.Enabled =true;

result = scanObj.Msg.Restl

if (1SktScanErrorsSKTSUCCESS(result))

{
}

break;

DisplayError("Failed to trigger: "+ result);

return result;

}

Java source code:

/I handler for the Trigger button
class TriggerButtonHandler implements Runnable {

private ISktScanDevice device=null ;
private ButtonField _button;

/I constructor

public TriggerButtonHandler(
ISktScanDevice device,
ButtonField button)

_device=device;
_button=button;

}
public void run() {

/I create a ScanObject instance
ISktScanObject scanObj=
SktClassFactorcreateScanObje¢};

/I Initialize a ScanObject to

/I Trigger the device

ISktScanPropety property=
scanObj.getProperty();

property.setID(
ISktScanProperty.propld.
kSktScanPropldTriggerDevige

property.setType(
ISktScanProperty.types.
kSktScanPropTypeByje

property.setByte(

ISktScanProperty.values.triger.

© 2014 SocketMobile, Inc.

21/184

Socket ScanAPI| Reference

kSktScanTriggerStaif;

/I set the property with the device
/I reference
long result=_deviceSetProperty(scanObj);

/I check the set result
if (SktScanErrorsSKTSUCCE@&sult) {
_button.setVisualState{/ISUAL_STATE_DISAB)ED

}
else
// display an error message
DisplayError("Unable to trigger: “tresult);
}

}

class ScanAPIConsumeextends TimerTask {

private ISktScanApi_scanApi
private AppRef_appRef
public ScanAPIConsumer(ISktScanApi scanApi,AppRef appRef
{
_scanApEscanApi;
_appRefappRef;
}

public void run() {
ISktScanObject[]scanObjrew ISktScanObject[1];

/[wait for scanAPI ScanObject
long result=_scanApiWaitForScanObject(scanObj,10);

if (SktScanErrorsSKTSUCCE@&sult))
{
if (result'=SktScanErrorsESKT_WAITTIMEOYT
{
int propld=
scanObj[0].getMessage().getID();

switch (propld){
caseISktScanMs&SktScanMsgldDeviceArrival

result=
HandleDeviceArrivalscanObj[0]);
break ;

caseISktScanMs&SktScanMsgldDeviceRemoval
result=
HandleDeviceRemovgkcanObij[0]);
break ;

case|SktScanMs&SktScanMsgldTerminate
/I we are done with ScanAPI, somebody
/I called Set with Abort as MsgID
result=
HandleTerminate(scanObij[0]);
break ;

© 2014 SocketMobile, Inc. 22/184

Socket ScanAPI| Reference

caseISktScanMskSktScanMsgSetComplete
case|SktScanMsgSktScanMsgGetComplete
result=
HandleGetOrSetComplete(scanObj[0]);
break ;

case ISktScanMsgkSktScanMsgEvent
break ;
}

I release the ScanObj we received in the wait
_scanApiReleaseScanObject(scanObj[0]);

}

/I called from the ScanAPI consumer logic

/[that is using the wait API

private long HandleGetOrSetComplete(ISktScanObject scainj) {
long result=SktScanErrorsEe SKT_NOERROR
ISktScanProperty property=scanObj.getProperty();
switch (property.getID()X{
case|SktScanProperty.propld.

kSktScanPropldTriggerDevice

/I ungray out the trigger btn
_appRefgetTriggerBtn().
setVisualStatel/ISUAL_STATE_NORNAL

result=scanObj.getMessage().getResult();

if (SktScanErrorsSKTSUCCE®&Ssult)){
DisplayError("Failed to trigger: "+result);
}

break ;

}

return result;

h

Objective C source code:

-(IBAction)btnClicked:(id)sender{
id<ISktScanObject scanObj=FktClassFactoncreateScanObjedt
[[scanObjProperty] setID:kSktScanPropldTriggerDevic
[[scanObjProperty]setTypekSktScanPropTypeBytg
[[scanObjProperty]setByte:kSktScanTrggerStar;
[_rootViewController AddPropertyToSetscanObj];
[_rootViewController SendFirstPropertyToSe};

}

/I timer handler for consuming ScanObject from ScanAPI
/I'if ScanAPl is not initialized this handler does nothing
-(void)onTimer{
if (_xanApilnitialized==true){
SKTRESULTesult=[_scanapWaitForScanObject scanObjectReceive@limeOut0];
if (SKTSUCCE@8sult)) {
if (result'=ESKT_WAITTIMEOUY
[self HandleScanObject scanObjectReceivdd

© 2014 SocketMobile, Inc.

23184

Socket ScanAPI| Reference

[scanapReleaseScanObjectscanObjectReceivdd
}
}
}

-(void) HandleScanObjectifl<ISktScanObject)scanobject{
switch ([[scanobject Msg] MsglD]) {

casekSktScanMsgldDeviceArrival:
[self HandleDeviceArrivatscarobject];
break;
casekSktScanMsgldDeviceRemoval:
[self HandleDeviceRemovakcanobject];
break;
casekSktScanMsgGetComplete:
[self DoGetCompletescanobject];
break;
casekSktScanMsgSetComplete:
[self DoSetCompletescanobject];
break;
casekSktScanMsgldTermate:
[_scanapCloss;
break;
casekSktScanMsgEvent:
[self HandleEventscanobject];
break;
default:
break;

}

-(void) DoGetCompletei@d<ISktScanObject)scanObject{
SKTRESULTesult=ESKT_NOERRQR
if (scanObject!=il) {

result=[[scanObject Msq Resulf;

id<ISktScanProperty property=[scanObjectProperty];

int ID=[property getlD];
switch (ID) {

casekSktScanPropldFriendlyNameDevice
result=[self OnFriendlyNamescanObiject];
break;
casekSktScanPropldBluetoothAddressDevice
result=[self OnBtAddressscanObiject];

break;

casekSktScanPropldDeviceType

result=[self OnScannerTypescanObject];
break;

casekSktScanPropldVersionDevice
result=[self OnScannerFirmwarescanObiject];
break;
casekSktScanPropldBatteryLevelDevice
result=[self OnBatteryLevd:scanObject];
break;
casekSktScanPropldLocalDecodeActionDevice
result=[self OnDecodeActionscanObject];
break;

© 2014 SocketMobile, Inc. 24/184

Socket ScanAPI| Reference

casekSktScanPropldCapabilitiesDevice
result=[self OnCapabilitiesDevicescanObject];
break;
casekSktScanPropldPostambleDevice
result=[self OnPostambleDevicescanObject];
break;
casekSktScanPropldSymbologyDevice
result=[self OnSymbologylnfoscanObject];
break;

default:

break;

}

/I send a notification to update the progress bar
[[NSNoatificationCenterdefaultCenter] postNotificationName:@"msg_namedbject:nil
userinfo:nil];

/I and send the next property if there is one
[self SendFirstPropertyFromLisi;

}

-(void) DoSetCompleteid<ISkiScanObject)scanObject{
SKTRESULTesult=ESKT_NOERRQR
if (scanObject=nil) {
result=[[scanObjectMsg|Resulf;
/I send a notification to update the progress bar
[[NSNoatificationCenterdefaultCentel] postNotificationName:@"msg_namedbject:nil
userinfo:nil];
_propertySetPendingsNG,
/I and send the next property if there is one
[self SendFirstPropertyToSe};

4.8 Handling asynchronous events or completion events

The ScanAPI object maintains a queue to receive asynchronous events and property
operation complete eventswaitting for the application to consume them

An application can retrieve theseeventsby using the wait API.
This API returns a ScanObject that will need to getleased once the application is
done with it by calling therelease API.

The wait API returns immediately if thereis an event in the queue, or iwill wait the
specified input parameter time if the queue is empty.

Completion events or asynchronous events can arrive any time and in any order.

The recommended way for handling these events is to create a switclhasgment on
the message ID received in the ScanObject.

© 2014 SocketMobile, Inc. 25/184

Socket ScanAPI| Reference

There are only 6 possible message types: kSktScanMsgldDeviceArrival,
kSktScanMsgldDeviceRemoval, kSktScanMsgldTerminate,
kSktScanMsgSetComplete, kSktScanMsgGetComplete and kSktScanMsgEvent.

For eachof thesemessage types handler functioncanbe called. Inside the handler
function, the Result member of the Message received should be chegdlo be sure
the process can continue.

The handler functions for theSetProperty Complete or GeProperty Comgete
event can also have a switchtatementon the property ID. If the application used
the context member of a property, the same context is then returned in the complete

property.

The decoded data or theCHSbutton & press statuss received in the hadler
functions for the messages that have kSktScanMsgEvent as message ID.

4.9 Termination

When ScanAPI is no longer needed it can be terminated by setting an Abort property
to the ScanAPI object.

At that point, if there areany devices open,ScanAPI senda Removal eventfor each
of the Device objectsopen,upon which the Deviceobject should be closedoy the
application using the close API.

Once all theDevice object have been closedScanAPI sends Terminate event and
at that point it is safe to closescanAPI.

5 ScanAPI Helper (available for Java, C#and Objective C)

ScanAPI Helper has been created to facilitate the integration of ScanAPI into an
application.

It is released as source code and therefore can be highly customizable for the need
of your application. Some basic and common features are provided as sample on
how to use ScanAPI.

NOTE: ScaAPI Helperis availablefor JavaC#and Objective (base code.
ScanAPI Helper maintains a list of commarsdo send to ScanAPI. Since properties
cannot be sat before the completion of the previous one, it offers an easy way to

queue the commands and provides a callback for each command completion. A
I ATTTATA ET OEEO AiI10AgO EO AEOEAO A 03A0

© 2014 SocketMobile, Inc. 26/184

Socket ScanAPI| Reference

By example, ifan application wants to retrieve the friendly name and the version of

OEA AT 11 AAOCAA AAOGEAAR EO OOAO 3AAT!'O0) (Al PAO
001 00" AOSAOEAABAOOCEIT 6 ET A Oi xh AT A £ O AAJ
passed, so when the Get Friendly Name completéise callback is called and the

application can refresh the Ul with the new friendly name, and it follows the same

logic when Get Device Version completes.

It retries sending the command up to 3 times if the command completion failed in
time out error.

The Java version oScanAPI Helper creates a timer task to consume asynchronous
ScanObject coming from ScanAPI

The C# and Objective C version of ScanAPI Helper does not create a timer, but
instead provides a methodDoScanAPIReceivehat has to be calledrom a timer
function or a thread.

The following paragraphs describe the steps required for using ScanAPI Helper.

5.1 Handling the ScanAPI Helper notifications

Since most of the ScanAPI operations are asynchronous, it is very important to setup
a way for handling notifications. ScanAPI Helper provides a
ScanAPIHelperNoaotification interfaceor a ScanApiHelperDelegate protocol for
Objective C environmenthat must be implemented in order to handle the various
notifications correctly.

Here is how Scanner Settingifor Android is using this interface:

private ScanApiHelperNotification_scanApiHelperNotificatiorrnew ScanApiHelperNotification() {
/**
* receive a notification indicating ScanAPI has terminated,
*then send an intent to finish the activity ifit is still
* running
*/
public void onScanApiTerminated() {
_consumerTerminatedEventset();
if (_forceCloseU[
Intent intent=new Intent(NOTIFY_CLOSE_ACTIWITY
sendBroadcast(intent);

}

/**

* ScanAPl is now initialized, ithere is an error

* then ask the activity to display it

*

public void onScanApilnitializeComplete{ong result) {
/I'if ScanAPI couldn't be initialized
/I then display an error
if (\SktScanErrorsSKTSUCCE@8&sult)){
_scanApiOwnersip.releaseOwnership();

String text=getString(R.stringfailed_to_initialize_scanapi_erroy+result;

Intent intent=new Intent(NOTIFY_ERROR_MESSAGE
intent.putExtra(EXTRA_ERROR_MESS#R#;

}

© 2014 SocketMobile, Inc. 27/184

Socket ScanAPI| Reference

}

/**

* ask the activity to displayany asynchronous error

* received from ScanAPI

*/

public void onError(long result) {
String text=getString(R.stringscanapi_is_reporting_an_errgrresult;

Intent intent=new Intent(NOTIFY_ERROR_MESSAGE

intent.putExtra(EXTRA_ERROREBSAGEeXt);

}

/**

* a device has disconnected. Update the Ul accordingly

*/

public void onDeviceRemoval(Devicelnfo deviceRemoved) {
_currentSelectedDevicenull ;
Intent intent=new Intent(NOTIFY_SCANNER_REMQYAL
intent.putExtra(EXTRA_DEVICENAMEviceRemoved.getName());
sendBroadcast(intent);

}
/**
*a device is connecting, update the Ul accordingly
*
public void onDeviceArrival(long result, Devicelnfo newDevice) {
Intent intent=null ;
if (SktScanErrorsSKTSUCCE@Ssult)){
_currentSelectedDevicenewDevice;
intent=new Intent(NOTIFY_SCANNER_ARRINVAL
intent.putExtra(EXTRA_DEVICENANEwDevice.getName());

else

String text=getString(R.stringerror_)+result+
getString(R.string. during_device_arrival_notification

intent=new Intent(NOTIFY_ERROR_MESSAGE

intent.putExtra(EXTRA_ERROR_MESSHRE;

sendBroadcast(intent);

}

/**

* ScanAPl is delivering some decoded data

* ask the activity to display them

*/

public void onDecodedData(Devicelnfo devicelnfo,

ISktScanDecodedData decodedData) {

Intent intent=new Intent(NOTIFY_DATA_ARRIVJAL
intent.putExtra(EXTRA_SYMBOLOGY_NAMEodedData.getSymbologyName());
intent.putExtra(EXTRA_DECODEDDAd&codedData.getData());
sendBroadcast(intent);

}

/**

*an error occurs during the retrieval of ScanObject

* from ScanAPI, this is critical error and only a restart

* can fix this.

*/

public void onErrorRetrievingScaniject(long result) {
Intent intent=new Intent(NOTIFY_ERROR_MESSAGE
String text="Error unable to retrieve ScanAPI message; "
text+="("+result+")";
text+="Please close this application and restart it"
intent.putExtra(EXTRA_ERROR_MESS e,
sendBroadcast(ntent);

© 2014 SocketMobile, Inc. 28/184

Socket ScanAPI| Reference

The same notification handler but this time from C# version of Scanner Settings:
/I ScanAPI Helper provides a series of Callbacks
/I indicating some asynchronous events have occured
#region ScanApiH elperNotification Members

/I a scanner has connected to the host

public void OnDeviceArrival(long result, ScanApiHelper. Devicelnfo newDevice)
{
DoScannerArrival(result,newDevice);
}
/I a scanner has dis connected from the host
public void OnDeviceRemoval(ScanApiHelper. Devicelnfo deviceRemoved)
{
DoScannerRemoval(deviceRemoved);
if (DeviceRemovalNotification != null)
DeviceRemovalNotification(deviceR emoved);
/I close the progress bar
if (UpdateProgressBarEvent != null)
UpdateProgressBarEvent(true);
}
/l'a ScanAPI error occurs.
public void OnError(long result, string errMsg)
{
MessageBox .Show("ScanAPI Error: " +Convert .ToString(result) + "
+ (errMsg != null ?errMsg : "y,
"Scanner Settings" , MessageBoxButtons .OK, MessageBoxlcon .Warning);
}
/I some decoded data have been receiv ed
public void OnDecodedData(ScanApiHelper. Devicelnfo device,
ISktScanDecodedData decodedData)
{
/I'if somebody (the ScanForm) has registered
/I to receive this event then fire the event now
if (DecodedD ataEvent != null)
DecodedDataEvent(device, decodedData);
}

/I ScanAPI is now initialized and fully functionnal

/I (ScanAPI has some internal testing that might take

/I few seconds to complete)

public void OnScanApilnitializeComplete(long result)

if (SkiScanErrors .SKTSUCCESS(result))
{

_binitialized= true ;
}
else
{
MessageBox .Show("SktScanOpen failed!" ,
"Scanner Settings" , MessageBoxButtons .OK, MessageBoxlcon .Warning);
}

/I ScanAPI has now terminate, it is safe to
/I close the application now
public void OnScanApiTerminated()
{
timerScanner.Stop();
_binitialized = false ;
Close(); // we can now close this form

/I the ScanAPI Helper encounters an error during
/I the retrieval of a ScanObject
public void OnErrorRet rievingScanObject(long result)

© 2014 SocketMobile, Inc. 29/184

Socket ScanAPI| Reference

{
MessageBox .Show("Unable to retrieve a ScanAPI ScanObject: " +
Convert .ToString(result),
"Scanner Settings" , MessageBoxButtons .OK, MessageBoxlcon .Warning);
}
#endregion

© 2014 SocketMobile, Inc. 30/184

Socket ScanAPI| Reference

The same notification handler but this timefrom Objective C version oScanner

Settings

/%%
* called each time a device connects to the host
* @param result contains the result of the connection
* @param newDevice contains the device information
*/
—(void)onDeviceArrival: (SKTRESULT) result Device: (DeviceInfox)deviceInfo{
// create a device info object to display the device main
// information in the table view
if (SKTSUCCESS(result)) {
[self.devicelist removeObjectAtIndex:0];
[self.devicelist addObject: [NSMutableDictionary dictionaryWithObjectsAndKeys:

[deviceInfo getNamel, kTitleKey,
@"Connected Scanner", kExplainKey,
deviceInfo, kViewControllerKey,

nilll;
_devicecount++;
_lastConnected=deviceInfo;
_selectedDevice=nil;// for now no device is selected

[self performSelectorOnMainThread:@selector(updateView) withObject:nil waitUntilDone:NO];

}
else {
UIAlertView *alert=[[UIAlertView alloc]
initWithTitle:@"Error"
message:@"Unable to open the scanner"
delegate:self
cancelButtonTitle:@"0K"
otherButtonTitles:nill;
[alert show];
[alert releasel;

}

/%%
* called each time a device disconnect from the host
* @param deviceRemoved contains the device information
*/
—(void) onDeviceRemoval:(DeviceInfox) deviceRemoved{
// remove the device info from the list
NSDictionary*x dico=[self.devicelist objectAtIndex:0];
DeviceInfox deviceInfo=[dico valueForKey:kViewControllerKey];
[self.devicelist removeObjectAtIndex:0];
if(_selectedDevice==deviceInfo)
_selectedDevice=nil;
_devicecount--;

// add the "No device connected" in the list
[self.devicelist addObject: [NSDictionary dictionaryWithObjectsAndKeys:
@"No device connected", kTitleKey,
@"Connected Scanner", kExplainKey,
nil, kViewControllerKey,
nilll;
[self performSelectorOnMainThread:@selector(updateView) withObject:nil waitUntilDone:NO];

}

/%%

* called each time ScanAPI is reporting an error
* @param result contains the error code

*/

—(void) onError:(SKTRESULT) result{

NSString* errstr=nil;
if(result==ESKT_UNABLEINITIALIZE)
errstr=[NSString stringWithFormat:@"'ScanAPI is reporting an error %d. Please turn off and on the
result];
Elliise
errstr=[NSString stringWithFormat:@"ScanAPI is reporting an error %d", result];

UIAlertView *alert=[[UIAlertView alloc]
initWithTitle:@"Error"
message:errstr
delegate:self
cancelButtonTitle:@"OK"
otherButtonTitles:nill;

[alert show];

[alert releasel;

© 2014 SocketMobile, Inc.

scanner.",

31184

Socket ScanAPI| Reference

© 2014 SocketMobile, Inc. 32/184

Socket ScanAPI| Reference

/%%
* called each time ScanAPI receives decoded data from scanner
* @aram deviceInfo contains the device information from which
* the data has been decoded
* @param decodedData contains the decoded data information
*/
—(void) onDecodedData: (DeviceInfox) device DecodedData: (id<ISktScanDecodedData>) decodedData{
[_selectedDevice setDecodeData:decodedDatal;
// if the confirmation mode is set to App then this
// App must confirm it has received the data and the
// scanner then will unlock the trigger for the next scan
if (_dataConfirmationMode==kSktScanDataConfirmationModeApp) {
[_scanApiHelper postSetDataConfirmation:device Target:self Response:nill;
}

b

/%%
* called when ScanAPI initialization has been completed
* @aram result contains the initialization result
*/
—(void) onScanApiInitializeComplete: (SKTRESULT) result{
if (SKTSUCCESS (result)){
// replace the text by No Device Connected
[self.devicelist removeObjectAtIndex:0];
[self.devicelist addObject: [NSDictionary dictionaryWithObjectsAndKeys:
@"No device connected", kTitleKey,
@"Connected Scanner", kExplainKey,
nil, kViewControllerKey,
nilll;
[self performSelectorOnMainThread:@selector(updateView) withObject:nil waitUntilDone:NO];

// set the confirmation mode to be local on the device (more responsive)
[_scanApiHelper postSetConfirmationMode:_dataConfirmationMode Target:self
Response:@selector(onSetProperty:)];

else{
UIAlertView *alert=[[UIAlertView allocl
initwWithTitle:@"Error"
message: [NSString stringWithFormat:@"Unable to
initialize ScanAPI: %d",result]
delegate:self
cancelButtonTitle:@"0K"
otherButtonTitles:nill;
[alert show];
[alert release];
[self.devicelist removeObjectAtIndex:0];
[self.devicelist addObject: [NSDictionary dictionaryWithObjectsAndKeys:
PLEASE_RESTART_THIS_APP,
kTitleKey,
@"Connected Scanner", kExplainKey,
nil, kViewControllerKey,
nilll;
[self performSelectorOnMainThread:@selector(updateView) withObject:nil waitUntilDone:NO];

b

/%%
* called when ScanAPI has been terminated. This will be
* the last message received from ScanAPI
*/
—(void) onScanApiTerminated{
[_scanApiHelper closel;
I

/%%
* called when an error occurs during the retrieval
* of a ScanObject from ScanAPI.
* @aram result contains the retrieval error code
*/
—(void) onErrorRetrievingScanObject: (SKTRESULT) result{
[self Debug: [NSString stringWithFormat:@"Error retrieving ScanObject from ScanAPI:%d",result]];

© 2014 SocketMobile, Inc. 33/184

Socket ScanAPI| Reference

5.2 Set ScanAPI Helper notification

ScanAPI Helper must be instructed to use your notification handlergect and this

can be accomplished by calling the setNotification metho@r setDelegate in

Objective C)with the reference to the notification interface implementation.
_scanApiHelpessetNotification(_scanApiHelperNotificatior);

This is important to usethis function prior calling the open function to be sure to

trap all the notifications.

5.3 Open ScanAPI Helper

Once the ScanAPI Helper object has been instantiate by using the new function, it
can then be open using the open() method. The open() method do&si® OA OO O1
anything but instead the onScanApilnitializeComplete notification will be called

once the ScanAPI initialization process has been completed. A result code indicates
how successful the initialization was.

Example:
_scanApiHelperopen();

5.4 CloseScanAPI Helper

Once the application is done with ScanAPI, it can close it by calling the close method

of the ScanAPIHelper object as shown below:
_scanApiHelperlose);

4EA Al T OA 1 AOET A AT AOGT 80 OAOOOT AT U OAI OAn
onScanApiTerminatel will be called when ScanAPI has effectively shutdown.

5.5 Scanner arrival

When a scanner connects to the host, ScanAPI Helper notifies the application using
the onDeviceArrival notification and specifies a result code, and in case of success it
also specifes the device information (friendly name, device type). ScanAPI Helper
keeps the device information object into its devices list. The application can retrieve
this list at any time. In our Scanner Settings SDK sample application for Android
platform, this notification asks the activity to refresh with the new scanner
information or in case of an error, it displays an error message as described below:

/**
*a device is connecting, update the Ul accordingly
*
public void onDeviceArrival(long result, Devicelnfo newDevice) {
Intent intent=null ;
if (SktScanErrorsSKTSUCCE@8&sult)){
_currentSelectedDevicenewDevice;
intent=new Intent(NOTIFY_SCANNER_ARRINVAL
intent.putExtra(EXTRA_DEVICENANEwWDevice.getName());

else
String text=getString(R.stringerror_)+result+

getString(R.string. during_device_arrival_notification
intent=new Intent(NOTIFY_ERROR_MESSAGE

© 2014 SocketMobile, Inc. 34/184

S

Socket ScanAPI| Reference

intent.putExtra(EXTRA_ERROR_MESS&GE;

sendBroadcast(intent);

5.6 Decoded data notification

Each time a scanner decodes correctly a barcode, ScanAPI Helper calls the
onDecodedData notification with the device information object and the decoded
data. In the Scanner Settings for Android case the activity that has registered for the
NOTIFYDATA_ARRIVAL intent will receive and display the decoded data. This
activity is the ScanWindowActivity.

Here is the code extract from Android Scanner Settings for this notification:

/**

* ScanAPl is delivering some decoded data

* as the activity b display them

*/

public void onDecodedData(Devicelnfo devicelnfo,

ISktScanDecodedDatdecodedData) {

Intent intent=new Intent(NOTIFY_DATA_ARRIVJAL
intent.putExtra(EXTRA_SYMBOLOGY_NAMeodedData.getSymbologyName());
intent.putExtra(EXTRA_DECODEDDABAcodedData.getData());
sendBroadcast(intent);

5.7 Scanner removal

When a scanner disconnects from the host, the ScanAPI Helper notifies the
application by calling the notification onDeviceRemoval. Usually the application
updates its Ulto reflect that change. The Scanner Settings for Android sends an
Intent to the Activity that has registered for it, as shown in the following lines:

/**

* a device has disconnected. Update the Ul accordingly

*

public void onDeviceRemoval(Devielnfo deviceRemoved) {
_currentSelectedDevicenull ;
Intent intent=new Intent(NOTIFY_SCANNER_REMQVYAL
intent.putExtra(EXTRA_DEVICENAMEviceRemoved.getName());
sendBroadcast(intent);

5.8 Is there a connected Scanner

At any point of time, the application can interrogate ScanApi Helper to know if there

is at least one device connected by using the following method:
_scanApiHelperisDeviceConnected();

© 2014 SocketMobile, Inc. 35184

Socket ScanAPI| Reference

This might be useful to know what application menu should be displayed by
example,which could change in function of the connection status.

5.9 Get the list of scanners

The list of connected scanner reference can be retrieved by using the getDevicesList
method.

5.10No Device Connected item

In some occasion the application might want to displag specific text when no
device is connected. The ScanAPI Helper method setNoDeviceText() allows the
application to specify a text that will be used to display the only item of the devices
list when no scanner is connected.

6 IDE Integration

6.1 C/C++ Version

ScanAPI version prior 10.1 has been compiled only with Visual Studio 2008 for both
targets: Windows Mobile and Windows.

ScanAPVersion 10.1 and higherhas been compiled with Microsoft Visual Studio
2008 for Windows Mobile and with Microsoft Visual Studiac2013 for Windows.

The SDK Samples folder has 2 solution files for each Visual Studio: samples.sIn for
Visual Studio 2013 and samplesWmVs2008.sIn for Visual Studio 2008.

The inclusion of ScanAPI in this environment in your C/C++ project can be done in 2

ways; by adding the following lines in your source file directly:

NET AT OAA OF 3 Sincludet 3G 1110) 0BAEGHE €

NMPDOACI A AT 11 AT Oj Ol EVRNIbh3cA A +0))8ITGERNI I 0AOEE
Or by adding only the include line in your source file and by adding the lib filai

your Project Link input settings.

6.2 Java Version

Since version 10.1 of ScanAPI, BlackBerry has been removed from the supported
hosts.

ScanAPI has been compiled using Eclipse Galileo (version 3.5).

ScanAPI is composed of two JAR files located under thedibectory of the SDK Java
portion.

Following are the steps required in order to include ScanAPI into your project and
workspace.

© 2014 SocketMobile, Inc. 36/184

Socket ScanAPI| Reference

6.2.1 Setting up the Eclipse workspace

From Eclipse select the menu Window / Preferences.

Select from the left tree control the math JavaBuild Path\ User Libraries

#ET 1T OA OEA O)i pi 00686 AOOOIT AT A AOI xOA O xE
select the ScanAPI_SDK.user librarigget Check the ScanARiption and click OK.

6.2.2 Setting up the application project for using ScanAPI

Go to your Java application project properties; select Java Build Path in the tree on
the left panel of your application properties dialog. On the right panel, select the

. EAOAOEAO OAA,ALA‘ALEAE iT OEA O!' AA , EAOAOQOUS

window selectO5 OAO , EAOAOUS AT A Al EAE 1 A@0Os
In the next screen selec6canAPI library and click the Finish button.

At this point your Java application is ready to use ScanAPI.

6.2.3 Tools provided with ScanAPI SDK

There are 2 tools provides in the SDK and that are launeti automatically during
the installation of ScanAPI SDK but they will not be launched if you have installed
ScanAPI SDK using the compressed SDK file.

UpdateWorkspace.jar tool creates a series of Path Variables that are used mostly for
compiling the SDK &mple application.

Since the Path Variable containa complete path, and not a relative path, this tool
updates these variables with the path of where the ScanAPI SDK installed on the
host machine.

The Path Variables are stored in the Eclispe workspace.

The tool asks the user for the path of the workspace to update with these new Path
Variables.

The SetupScanAPI_SDK.jar. tool modifies the project settings of the sample
application for Android platform and setup the ScanAPI SDK path in the user library
file.

6.3 C# Version

ScanAPWersion prior 10.1 has been compiled with Visual Studio 2008 and using the
Compact Framework 2.0 and the .NET framework 3.5.

ScanAPI version 10.1 and higher has been compiled with Visual Studio 208

Windows target and with Visual Studio 2008 for Windows Mobile targetusing the
Compact Framework2.0 and the .NET framework 4.0.

© 2014 SocketMobile, Inc. 37/184

Socket ScanAPI| Reference

The C# version uses a wrapper. ScanAPI has been compiled as a native (unmanaged)
DLL. This DLL is ScanAPIDLL.dIl for Windows platforms and ScanAPIDLLWMat
Windows Mobile platform. The managed API is assembled in ScanAPIManaged.dl|

for Windows platforms and in ScanAPIManagedWM.dll for the Windows Mobile
platforms.

Both sets of DLLs are therefore required on the host device and should be located at
the same place. So for a Windows host, the application using ScanAPI should have in
its directory ScanAPIDLL.dIl and ScanAPIManaged.dll. Same for a Windows Mobile
host, the application using ScanAPI should have in its directory ScanAPIDLLWM.dII
and ScanAPIMaagedWM.dIl.

In order to build your ScanAPI application, add the ScanAPI Managed reference in
the References folder of your application by browsing to where ScanAPI SDK is
installed on your developer machine, and pointing to the right dil. Depending on
where the ScanAPI SDK has been installed, the path may look like this:

CA Program Files Socket Mobilé SocketScan 10ScanAPI_SDRNindows\ lib.

6.4 Objective C Xcode integration

ScanAPI is released in a static library forpma serie of header files and the sourdées
for ScanApiHelper, Devicelnfo and Debug.

The recommended way to integrate ScanAPI in your Xcode project is to drag and
drop the ScanAPI folder located at the root of the ScanAPI SDK into your Xcode
project.

The application must add the External azessory framework,

AVFoundation.framework, AudioToolbox.framework and in the info plist the
O030DbDbi OOAA %@OAOT Al ' AAAOGOTI OU 00T OT AT 16
OAT I 801 AEAOI T AEI ABAEOG 8

Most of the time, ScanApiHelper should be integrated into one of therdooller of
the iOS application. The header of this controller should contains the following line:
NEI T OO0 O3 AT ! PE(Al PAOS8

The controller must derive from ScanApiHelperDelegate protocol.

© 2014 SocketMobile, Inc. 38/184

Socket ScanAPI| Reference

7 Recommendations

7.1 General

The recommended approach of managingscanner connection to the host is to
detect if a scanner is connected when needed in the application. It is not
recommended to control the connection and disconnection of the scanner as the
scanner can be disconnected or connected independently of the ajmaltion state.

If an application has multipleviews, but only oneview requires a scanner to be
connected, the best approach for thigiew is to check if a scanner is connected. If a
scanner is not connected, then the application should direct the user ¢row to
connect the scanner to the host. This can be done by scanning a barcode, or simply
by turning on a scanner that is already paired to the host. The scanner can be left
connected through the life cycle of the application knowing that the power
consumption for both, the host and the scanner, is minimal in that operational

mode.

)y £ OEA OAATTAO AT AO1 60 EAOA AT U AAOGEOEOUR EC
timeout. If for some reason, the host and the scanner are out of range, the scanner
will auto matically try to reconnect to the host during a periodof 45 seconds for a
CHS Ki/7Qi series or up to 30 connection attempts for a CHBCi/Mi/Pi/8Ci /8Qi
series.

At any time the user can turn off or on the scanner. Upon turning the scanner back
one, it will reconnect automatically to the last paired host device.

7.2 Android

It is not recommended to attach ScanAPI or ScanApiHelper to the Activity class, as
this object will get destroy and recreated upon screen rotation causing a connection
drop of the eventual connected scanner. The scanner will automatically reconnect to
OEA ET 0O EI OEEO AAOGAh AOO OEA OOGAO AgPAOEAI

We recommend attaching ScanAPI or ScanApiHelper to the application class as
shown in our sample application ScannerSettings fdhe optimal user experience.

It is important to note that your application must request the permission to use
Bluetooth and to write in the external storage. This last permission is required
because the ScanAPI settings are stored into a file on the extal storage.
These permissions are identified respectively as follow:
android.permission.BLUETOOTH

android.permissionBLUETOOTH_ADMIN and

android.permission. WRITE_EXTERNAL_STORAGE.

© 2014 SocketMobile, Inc. 39/184

Socket ScanAPI| Reference

) £/ OEAOA DPAOI EOOEI T O AOAT 60 OACMRIOOAAR OEA
returning error ESKT_TESTFAILED-X), and the Bluetooth one will make ScanAPI

returning error ESKT_UNABLEOPENDEVICRT) and then

ESKT_NOTHINGTOLISTEMNT).

7.3 10S

On an iOS device, the scanner will always stay connected to the host. If the
application goes to the background, the application is paused. The External
Accessory framework will then simulate a device disconnection to the applicatign
but the Bluetooth link remains active When the application is brought back to the
foreground, the ExternalAccessory framework simulates a device connection. Only
certain application types are authorized to run while in background. For these types
of applications, the connection to the scanner will stay alive and running. The
application types are multtmedia (music applications playing music while moved to
the background), VOIP applications and location based applications. This restriction
is dictated by iOS and is out of the control &canAPI

8 Device Connection and Disconnection process

With current versions of CHSScanners in order to have the best user experience
possible, the CHS is always the initiator of the connection process. That is, the CHS
will always be the device to start the connection process, after an initial setup
connection has been made.

8.1 Initial Connection

The process of the initial connection starts by having the CHS scan a connect
barcode. Once the Bluetooth pairing process is completed, the ScanAPI object
generates a Device Arrival notification that contains the device information.

If the scanner is a 2D Imager scanner, 72Qi series, the connect barcode can be
scanned directly from the device screen. This can be accomplished through the use
of Socket EZ Pair which is a separate application released with the SDK.

If the scanner is a D laser scanner, Mi/Pi, the connect barcode must be printed out
on paper. Socket EZ Pair can configure the scanner to have it connect back to the
host without the need to scan a connect barcode. In this case, the 1D scanner must
be paired with the host frst using the Bluetooth functionality present on the host.

The connect barcode contains the Bluetooth Device Address of the hosmitist be a
Data Matrix 2D barcode for the 2D Imager scanneeXi/Qi series,andit ,mustbe a
Code 128 1D barcode for the 1[3/8 series. Refer to the scanner documentation for
more information about the connect barcode.

© 2014 SocketMobile, Inc. 40/184

R

Socket ScanAPI| Reference

Some hosts require having their Bluetooth mode set to discoverable in order to
accept the first initial connection.

If the host is an iOS device, the conne8tA OAT AA AT AOT 60 AT 1T OAET OEA
address, as iOS does not provide an API to retrieve the Bluetooth address, but

ET OOAAA AT 1T OAET O A AT T T AT A O OxEOAE OEA #(3
connection can be then started from the iOS Bluetooth managey tapping on the

desired CHS listed in the Bluetooth discovered devices list. This will initiate the

pairing process and the CHS will connect back to the iOS device as soon as it is

powered on and do this until its connection information is cleared.

8.2 Subsequent Connection
Once the initial connection is made between the scanner and the host, the scanner

xEl 1 AOOI I ACEAAT T U OAATTTAAO OF OEA EIT OO0 AAA
have a ScanAPI application running at the time the scanner connectse tscanner
will try a certain number of times before aborting the connection process.

ScanAPI sends a device arrival notification to the application each time a scanner
connects to the host.

8.3 Reconnection

If the connection between the scanner and host is$t for any reasonsuch as the
scanner moving out of range of the host, the host suspending or going to sleep, the
scanner will try to reconnect to the hostfor a period of time (45 secondsfor a 7X Qi
CHS) ora fixed number of times(30 times for a 7Ci/Mi/Pi or 8CiQi) before going to
idle mode.

8.4 Disconnection

The disconnection processisually only happens when the scanner powers off. This
occurswhen the user presses the scanner power button to shut it down, or if the
scanner is connected for a long perid of time without activity and autamatically
powers itself off.

There is also a property(kSktScanPropldDisconnectDevicethat can be set to the
scanner to make it disconnect.

Each time a scanner disconnects, a device removal notification from ScanAFPdat
to the application containing the scanner information.

8.5 Roaming

The scanner can connect from one host to another by simply scanning the connect
barcode of another hosif available. Note this effectively pairs it to the new host.

© 2014 SocketMobile, Inc. 41/184

Socket ScanAPI| Reference

8.6 Socket EZ Pair featue

This feature is not available for iOS devices. The Scanner reconnects automatically
as soon as the iOS device has successfully paired with the Scanner from its General
Bluetooth settings.

The Socket EZ Pair application configures a scanner to conneetck to the host
either by scanning a barcode displayed on the screen or by using a set of properties
sent to the scanner. The latter case is described here.

In order to have ScanAPI connecting to a particular scanner, the ScanAPI
communication port configuration must be changed.

Usually, when a host discovers a scanner, it either assigns a communication port to
this particular scanner (Windows based platforms), or its friendly name is used to
initiate a Bluetooth connection (OS andAndroid platforms). If the ScanAPI serial
port configuration is modified to use an outbound port, ScanAPI will then connect to
the remote device that is assigned to this outbound port.

For the scanner to connect back to the host, ScanAPI needs to beoafigured to
use a geeric inbound communications port that the scanner will connect back on.

Once ScanAPI has connected to the scanner using either its assigned communication
port or friendly name, the device arrival notification is received by the application.

At that time the application should send the following properties to configure the
scanner to reconnect back to the host:

- Property kSktScanPropldProfileConfigDevice : to transmit the host Bluetooth
address to the scanner and to specify that the scanner should initiattee
connection in Serial Port Profile (SPP) mode.

- Property kSktScanPropldDisconnectDevice: to disconnect the scanner and
make the new configuration active. At that point the scanner will try to
reconnect back to the host.

Once the last property has beeset, the configuration of ScanAPI must be reverted
back to its original configuration so that it is waiting for an incoming connection.

The ScanAPI propertykSktScanPropldConfiguratiorOD3 AOE AT 01 0006 EO OOAA
read and modify the ScanAPI communation port.

NOTE: It isnot recommended to use ScanAPI as the initiator of the connection. It

AT AG1 60 EAOGA OAAT 1T AAOGEITT 11T CEAhRh AT A EO xEII
connection has to be made.

9 Data Editing

© 2014 SocketMobile, Inc. 42/184

Socket ScanAPI| Reference

Data Editing is a feature built in ScaniAl to transform the decoded data by defining
a serie of operations that can be triggexd by specific criteria. The trigger definition
and the serie of operations are regrouped into a Data Editing Profile.

NOTE: Data Editing is available on ScanAPI versi@0.0.10 and higher.

The concept of Data Editing Profile has been introduced for covering the case where
more than one application is using the barcode scanner, and the format of the
decoded data expected bgne application is different from the other applications.
Eachapplication can then have itown Data Editing Profile The ScanAPI SDK
provides an API for the application to select its Data Editing profile configing the
Data Editing to its needs.

The Data Editing profile trigger defines the critiera to which the decoded data must
comply for applying the Data Editingoperations.

These criteria are optionaland can be ignored by setting O or an empty string in
function of the type of parameter

The Data Editing operationsmodify the decoded data.

These operations are defined in 2 categories: string and index. The string category
regroups all the operations that transforms the decoded data and return a new
string as result of the transformation. The index category are utilities operations
looking for a specific characters or string of characters and returning the index of
their locations.

These 2 categories of operations caacceptparameters that can be either a constant
value, or the result of an operation.

This allowsbuilding complex Data Editingoperation by chaining operations

together either as parameter of each other or by concatenation of multiple
operations.

The current profile isthe profile that ScanAPI loads upon its initiliation or when the
Set kSktPropldDataEditingCurrentProfile is ineked with a valid profile name as
parameter.

In the event there is an issue in the current profile that is loaded during ScanAPI
initialization, the initialization will go through with success, but an error event
ESKT_UNABLEINTIALIZEDATAEDITING is senttie application indicating that the
AOOOAT O $A0OA wWAEOET ¢ DPOI £EI1 A EAEI AA Ol
applied.

9.1 Profile
A Data Editing Profile contains a Trigger section and an Operations section.

© 2014 SocketMobile, Inc. 43/184

ET

EOE

Socket ScanAPI| Reference

This gives a way to identify a set of dger criteria the decoded data should comply and

a set of Operations to apply to the decoded dake ifrigger criteria are met

There can be only one active profile seleced time, often called current Profile. The

profile is identified byanamd@& her e candét be 2 or more profil

9.1.1 API

The list of semi colon separated profile names can be retrieved by doing a get with the
property ID set t&kSktScanPropldDataEditingProfile. Foraddng a new profile, just

add a new name to this lisind a placeholder for the new profile will be createst.

deleting an existing profile, just remove its name from the list.

The propertykSktScanPropldDataEditingCurrentProfile is used to retrieve or set the
current Active Profile.

Refer to the Propges paragraph for more information about these properties.

9.2 Trigger

The trigger contains the list of criteriato which the decoded data mustompliant
with in order to apply the Data Editing operationslf at least one condition is not
met then the decodedlatais not edited and stays unchanged.

9.2.1 API

The Trigger criteria can be read or modified by using the following set of properties:
kSktScanPropldDataEditingTriggerSymbologies,
kSktScanPropldDataEditingTriggerMinLength,
kSktScanPropldDataEditingTriggerMaahgth,
kSktScanPropldDataEditingTriggerStly,
kSktScanPropldDataEditingTriggerEndsWith,
kSktScanPropldDataEditingTriggerContains.

All these properties requitte name of the profile for which the trigger informatisn
read or modified.

Refer to theProperties paragraph for more information on each of these properties.

9.2.2 Symbology IDs

This trigger contains the list of the symbology IDs that the decoded das&ould be
coming from.

ByexampleE/&E OEA 1 EOO Al 1T OAET O OEA50860 ADAODARAAUY
is scanned, the decoded datare notedited andstayunmodified8) £ A O#1 AApcy
barcode is scanned and if the decoded data matches the other Trigger criteria, then

the Data Editing operationsare applied to the decoded data.

)
0

© 2014 SocketMobile, Inc. 44184

Socket ScanAPI| Reference

If no Symbology Ds are specified, then the barcode can be from any Symbgy and
can be edited as long as it mahes the other Trigger criteria

9.2.3 Min Length

This criteria requesithe decoded data to be at least of the specified minimum size. The
Data Editing will fail totrigger if the decoded data length is smaller than the amount of
characters specified.

If no Min Length is specifiedr the Min Length value is set tq then the barcode can
have any minimum size to trigger the Data Editing.

9.2.4 Max Length

Same principle aslinimum Length, if a maximum length is specified, only the decoded
data with a sizéess tharor equalto the maximum length will trigger the Data Editing.

If no Max Length is specifiedr the Max Length value is set to O, the barcode can
have any marum size to trigger the Data Editing.

9.2.5 Starts By

This criteriatriggersthe Data Editing if and only if the decoded data staitis the
decoded data specified tinis criterion

If nothing is specifiedr the string is emptfor this trigger parameter, éhdecoded data
can start by anything and be edited as long as the other trigger criteria are met.

9.2.6 Ends With

This trigger parameter specifies what is required to be present at the end of the decoded
data characters string to apply the data editing opegation

If nothing is specified for this parametar the string is emptythe decoded data can be
ending by any characters and be edited as long as the other trigger criteria are met.

9.2.7 Contains

This trigger parameter specifies what characters string must $enpiie the decoded

data in order to edit them. The characters string can be anywhere in the decoded data; at
the beginning, the ending and at the middle.

If nothing is specifiedr the string is emptthe decoded data can contains anything and

be edited s long as the other trigger criteria are met.

9.3 Operations

The operations are defined in a single string of characters. The string should always start
bythestatper at i on del ifaloweahythedndaperatian delimitér{ o6

c har act e eration}sidould aiways beplelimited by the start operation delimiter
character and by the end operation delimiter.

Example: fA{}{decodedDat a() }
This example returns the decoded data.

© 2014 SocketMobile, Inc. 45184

Socket ScanAPI| Reference

Any characters that are outside the operation delimiters would bateoed to the

output string.

Example{ } Pref i x{ DecodedcbDatapy} BlWwi3f4ickeeSrugfifviex 0 i f
barcode containing 1234%6 scanned.

There could be multiple operations after the ather
Example: 0{} Pr ef ABC{Deeocdaddatal IDA u faf(i) % thisrpsulto d u c e
OPrefi YWBRQBAHHL56 Suffixo i f t sél238s&r code scanne

Some operations have parameters. These parameters can be a constant value or the result
of another operation as long as the type corresponds tahadrametetype is

otherwise an errdas generated.

Example: Aa{}{T
barcode scannddfi 1 2 34 5

runcateFromBegi oi 4P édDecbdeld®da
6 0 .
9.3.1 API

The property kSktScanPropldDataEditingOperation retseremnodifieghe Data
Editing gperations of a particular profile. The name of the pradilgassed as parameter
of this property.

Refer to the Properties paragraph for more information about this property.

9.3.2 DecodedData
Prototype: String DecodedData()

This operation returns the decodiata as iis received from the barcode scanner.

9.3.3 Truncate from Beginning
Prototype: String TruncateFromBeginning(String input,int nbChars)

This operation removes a number of characters from the beginning of the decoded data.
If nbChars is set to O thenére input characters string is retruned.

If nbChars isequalor greaterthan the actual length of the input strifgnan error
ESKT_INVALIDOPERATION is generatediuring the Data Editing proceasd the

decoded data stays-mmodified This error is noteported to the application.

9.3.4 Truncate from End
Prototype: String TruncateFromEnd(String input, int nbChars)

This operation removes a number of characters from the end of the decoded data.
If nbChars is set to 0 the entire input characters string imertuwunmodified.

If nbChars isequalor greaterthan the aatal length of the input string, then an error
ESKT_INVALIDOPERATION is generated during the Data Editing process and the
decoded data stays-mmodified. This error is not reported to the applimat

© 2014 SocketMobile, Inc. 46/184

Socket ScanAPI| Reference
9.3.5 Replace
Prototype: String Replace(String input,String search,String replace)

This operation returns a string resulting of the regtaent a string of characters by
another one. Only the first occurrence is replaced.

The input string is returned ifi¢ string of characters is not found.

9.3.6 Substitute
Prototype: String Substitute(String input,String strCharToReplace,String strNewValue)

This operation replaces each occurrence of a character that is present in the
strCharToReplace by the specified strNeuéa

If only one character needs to be replaced by the new value then the strCharToReplace
contains only this specific character.

Example A{{Substitute(12345678,36)} 0 returnsil2-45-780 .

The input string is returnaah-modifiedif no character hasgen replaced.

9.3.7 Escape Character
Prototype: String EscapeCharac{&tring escapeCharacterinHexa)

This operation returns a string that corresponds to the Escape character.

For examplethe CR charactewhich is 0x0d can be injected into the string balling
this operationi{ EscapeCharacter(Oxj}a.

9.3.8 InsertAfterindex
Prototype: String InsertAfterindex(String input,int index,String insert)

This operation inserts a string of characters after the specified ifdisxoperation
returns the resulting shg of characters. If the index value is setlpthen this operation
inserts after the last character of the decoded data. If the index is2¢hén this
operation doesn't insert anything and the string returned is the string in input.

If the indexis bigger tharthe actual input string length an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the
decoded data stays-mmodified. This error is not reported to the application.

© 2014 SocketMobile, Inc. 47/184

Socket ScanAPI| Reference

9.3.9 InsertBeforelndex
Prototype: String InsertBefeelndex(String input,int index,String insert)

This operation inserts a string of characters before the specified index. If the index value
IS set to-1, then this operation inserts before the last character of the decoded data.

If the index is set te2, the string returned is the string in input.

If the index is bigger thathe actual input string length an error
ESKT_INVALIDOPERATION is generated during the Data Editing process and the
decoded data stays-umodified. This error is not reported to thpplication.

9.3.10 FindFirstFromIndex
Prototype: int FindFirstFromindex(String input,int start,String search,int offset)

This operation returns the index plus the offset of the first occurrence of a string of
characters starting the search from the specifiddx. If the string is not found, the index
returned is2.

If the start index isl it searches from the beginning, which is th@eas if the indeis
set to 0. If the specified index48 this function returns2 as well to indicate a string not
found.

If the start index is bigger thahe actual input string leng#m error
ESKT_INVALIDOPERATION is generated during the Data Editing process and the
decoded data stays-mmodified. This error is not reported to the application.

9.3.11 FindLastFromIndex
Prototype: int FindLastFromindex(String input,int end,String search,int offset)

This operation returns the index plus the offset of the last occurrence of string of
characters starting from the specified index.

If the string is not found the index returned2.

If the index specified isl the search atts from the beginning of thetring, exactly like
if the index value was set to 0. If the specified inde® jghisoperation returns2
whether or not the string is found in the input string.

If the index specified is bigger thahe actual input string length an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the
decoded data stays-mmodified. This error is not reported to the application.

© 2014 SocketMobile, Inc. 48/184

Socket ScanAPI| Reference

9.3.12 MakeUpperCase
Prototype: StringMakeUpperCase(String input)

This operation returns the input string with all the characters converted to upper case.

9.3.13 MakeLowerCase
Prototype: String MakeLowerCase(String input)

This operation returns the input string with all the character converted¢o case.

9.3.14 ReplaceNonPrintableCharacters
Prototype: String RemoveNonPrintableCharacters(String input,String replace)

This operation returns the input string without aoy-printable ASCII characters by
replacing them with the content of the replacengtparameter. The replace string
parameter can be left empty which in this case will simply remove alpriotable
ASCII characters.

9.3.15 DecodedDataWithoutTrailer
Prototype: String DecodedDataWithoutTrailer()

This operation returns the deted data withot the norprintable characters located at
the end of the decoded data.

This is useful if the scann& programmed witla carriage retursuffix, and theData
Editing is adding a new suffix. fle scanner can keep its settimlgile the data editing
operatonis adding a new suffix.

9.3.16 TruncateAfterindex
Prototype: String TruncateAfterindex(String input, int index, int offset)

This operation returns the characters before the specified index plus the offset. If the
index is-1 or-2 it returns the entire inpstring.

If the sum of index and the offset is 0 then an empty characters string is returned.

If the sum of the index and the offsegi®ater thamr equalto the actual input string
length then an error ESKT_INVALIDOPERATION is generated during thex EBaliting
process and the decoded data staymadified. This error is not reported to the
application.

© 2014 SocketMobile, Inc. 49/184

Socket ScanAPI| Reference

9.3.17 TruncateBeforelndex
Prototype: String TruncateBeforelndex(String input, int index, int offset)

This operation returns the characters from the specifidex plus the offset up tbe end
of the input string. If index isl or-2 the entire input string is returned.

If the sum of tle index and offset is O then an empty characters string is returned.

If the sum of the index and offset is biggeregyal to the actual input string lengthen

an error ESKT_INVALIDOPERATION is generated during the Data Editing process and
the decoded data stays-modified. This error is not reported to the application.

9.3.18 Substring
Prototype: String Substring(String inpuint startindex,int stoplndex)

This operation returns the string that is between the start index and the stop itigex of
input string.

If startindex is-1 or -2 thenO replaces it
If the stoplndex is1 or -2 thenit's replaced by the index dié las character in the input
string.

If the startindex is bigger aqualto the actual iput characters string length then is set to
be equalto the input characters string length.

If the stoplndex is bigger aqualto the actual inputharacters string Igith then it is set

to beequalto the input characters string length.

If the startindex and the stopindex agualthen an empty character string is returned.

9.3.19 Extract
Prototype: String Extract(String input,string from, string to)

This operation returnghe string that is between the first occurrence of the from sandg
the last occurrence of the to string.

If the from string is not found, the entire beginning of the string is extracted uptt the

string. If the to string is not foundhe string iextracted up tohe end of thénput string.

9.4 Import-Export

The Data Editing feature offers a way to import or export Data Editing profites.
Import-Export profiles format is done using a set of XML tags.

The import will merge the imported profilegdnthe current profiles. An error is
generated if at least one profile name is identical to a name already present in ScanAPI.

© 2014 SocketMobile, Inc. 50/184

Socket ScanAPI| Reference

9.4.1 API

The property kSktScanPropldDataEditinglmportExport imports or exports the Data

Editing profiles.

A list of profile names mu<e specified to export the profildsf a profi |l e name
match with an actual profile, it is ignored.

Refer to the Properties paragraph for more information about this property.

9.4.2 XML Format

The import/export is using an XML format in order to defone or more Data Editing
profiles.

The first XML tag is DataEditing and it contains all the profiles. It has one attribute to
sepecify the version of ScanAPI interface. This ScanAPI interface version can be
retrieved with the property kSktScanProy&tson. Refer to the property paragraph for
more information about this property.

The version is important because the Data Editing profile can be save into a file for
importing profile into a different host. If this different host has a less recent vexfsion
ScanAPI, some of the commands might not be available. The import operation checks if
the version specified in the Data Editing attributkess tharor equalto the current

ScanAPI interface version. If ScanAPI has an older version the Data Editiogt wif

fail with an error.

NOTE: The ScanAPI Interface version is a different version then the ScanAPI Version.
The interface version changes each time a new API or Data Editing Operation is added or
removed.

The profile is nested in the Profile XMLgaThe attribute Value of this Profile tag
contains the name of the profile.
There are 2 tags nested in the Profile tag: Trigger and Operation.

The Trigger tag also nests all the trigger parametertkegare defined as follow:

The Symbologytag that ontains an attribute Value twlds the seracolon list of
Symbologies the decoded data can be in order to apply the Data Editing operation.

The MinLength and MaxLength tags that contain an attribute Value to hold respectively
the minimum length and maxum length a Decoded Data must be in order to trigger the
Data Editing operation.

The StartsWith and EndsWith tags that contain an attribute Value to hold respectively the

string the Decoded Data must start with and end with in order to trigger the Dtatg Ed
operation.

© 2014 SocketMobile, Inc. 51/184

(

Socket ScanAPI| Reference

The Contains tag that contains an attribute Value to hold the string the Decoded Data
must have in order to trigger the Data Editing operation.

The Profile tag nests the Operation tag that
Value that holds the Data Editing operations.

Here is an example of 2 profddfefsi o®i ng expor

<DataEditing ScanAPlInterfaceVersion="1.0.1">

<Profile Value="driver">

<Trigger>

<Symbology Value="Pdf417"/>

<MinLength Value=""p

<MaxLength Value=""/>

<StartsWith Value=""/>

<EndsWith Value=""/>

<Contains Value=""/>

</Trigger>

<Operation
Value="{}{ReplaceNonPrintableCharacters({Extract({DecodedData()},DCT,DBD)},
)YKExtract({DecodedData()},DCS,DCT)HExtract({DecodedData()},DAG,DAKRepla
ceNonPrintableCharacters({Extract({DecodedData()},DAI,DAJ)},
)KReplaceNonPrintableCharacters({Extract({DecodedData()},DAJ,DAK)},
)YKExtract({DecodedData()},DAK,DAQ)}'/>

</Profile>

<Profile Value="prefixsuffix">

<Trigger>

<Symbology Value="Codel28pde93"/>

<MinLength Value=11"/>

<MaxLength Value=14"/>

<StartsWith Value=12"/>

<EndsWith Value=""/>

<Contains Value=SP'/>

</Trigger>

<Operation

Value="{} PPRTruncateFromBeginning({DecodedData()},{FindFirstFromindex({Decod
edData()},0,*;333)})} SSS/>

</Profile>

</DataEditing>

10 Specific scanner configurations

Most of the common configuratiors of a scannerare accessible through the
properties exposed by ScanAPI.

© 2014 SocketMobile, Inc. 52/184

Socket ScanAPI| Reference

Some specific settings can be configured through the use of the
kSktScanPropldDeviceSpecifiproperty.

meters of this property are specific by Scanner modéior example a
T¢c OEAO xT OEO A O A x#Eh xi 180 xI OE £ C

The para
OAOOE

10.1Adaptive Scanning

The adaptive scanning process uses a range finder to provide feedback on how far
away a bar codas when scanning, and automatically optimizes parameters to
improve decode performance. These parameters include bandwidth, receiver gain,
digitizer settings, and scan angle; however scan angle is the only noticeable
parameter controlled.

When the bar coe reaches a certain distance from the engine (approximately 30
inches), the engine automatically reduces the scan angle to narrow (10°). (The
exception is highly reflective bar codes, which may not cause the scan engine to
switch to the narrow angle). However, if the scan line is not touching a bar code, the
engine may switch to the narrow scan angle at a much shorter distance. This
improves decode range on certain bar codes. This feature can be disabled and the
user can select narrow, medium, or wide anglenly, depending on application
needs.

This feature is supported only by the CH3Mi and 7Pi (1D Laser scannerdRevCand
higher.

The following table showsthe content of the kSktScanPropldDeviceSpecific
property bytes array:

Byte index | Value | Description

0x08 Length of the commandncluding this byte.

0xC6 Set Parameter Opcode

0x04 Status always 0x04 for Host

0x00 Flags: always 0x00

OxFF Beep code: Not used, always OxFF

OxF2 First byte of the parameter ID for Adaptive Scanning

0x51 Second byte of the parameter ID for Adapative Scanning

N[O~ WINIFLIO

0x01 0x01: for enabling the feature and 0x00 for disabling it.

10.2Scan Angle

The scan Angle can be changed to be narrower or wider. This feature is only
available inthe CHS7Mi and 7Pi 1D Laser sanners.

© 2014 SocketMobile, Inc. 53/184

Socket ScanAPI| Reference

The following table shows the content of the kSktScanPropldDeviceSpecific
property bytes array:

Byte index | Value | Description

0x07 Length of the command including this byte.

0xC6 Set Parameter Opcode

0x04 Status: always 0x04 for Host

0x00 Flags: always 0x00

OxFF Beep code: Not used, always OxFF

OxBF | The parameter ID for Scan Angle

OO~ WNFLO

0x00 |m@nm A O pnd AT ClI Ah n@np A

10.3Code 39 Length configuration

The decoded data length can be specified when scanning a CodédBcode.
This feature is also different from one scanner model to another.

For the 7Ci, 7M, 7R, 8Cj 8Qiseries:

There are 4 modes possible,

Only one dscreet length(L1):

Byte index | Value | Description

0x09 Length of the command including this byte.

0xC6 Set Parameter Opcode

0x04 Status: always 0x04 for Host

0x00 Flags: always 0x00

OxFF Beep coce: Not used, always OxFF

0x12 The parameter ID for Length 1

0xOD | The length valuefor L1

0x13 The parameter ID for Length 2

N WIN|IFL|O

0x00 The length valuefor L2 z must be 0x00 for 1 Discreet

Two discreet lengths(L1 and L2).

Byte index | Value | Description

0 0x09 Length of the command including this byte.

1 0xC6 Set Parameter Opcode

2 0x04 Status: always 0x04 for Host

3 0x00 Flags: always 0x00

4 OxFF Beep code: Not used, always OxFF

5 0x12 The parameter ID for Length 1

6 0xOD | The length valuefor L1 must be bigger than second discreet
length L2

7 0x13 The parameter ID for Length 2

© 2014 SocketMobile, Inc. 54/184

Socket ScanAPI| Reference

8 0x06 The length valuefor L2 must be smaller than first discreet
length L1

Any decoded data that is included in the length range:

Byte index | Value | Description

0 0x09 Length of the command including this byte.

1 0xC6 Set Parameter Opcode

2 0x04 Status: always 0x04 for Host

3 0x00 Flags: always 0x00

4 OxFF Beep code: Not used, always OxFF

5 0x12 The parameter ID for Length 1

6 0x04 The length valuefor L1 must be smaller than the second
length L2

0x13 The parameter ID for Length 2

8 0x10 The length valuefor L2 must be greater than the first length

L1

Any length barcode is decoded (may result in misreads):

Byte index | Value | Description

0x09 Length of thecommand including this byte.

0xC6 Set Parameter Opcode

0x04 Status: always 0x04 for Host

0x00 Flags: always 0x00

OxFF Beep code: Not used, always OxFF

0x12 The parameter ID for Length 1

0x00 Must be zero for any length read

0x13 The parameter ID for Length 2

N WINIFO

0x00 Must be zero for any length read

For the 7Xi/7Qi series:

The 7XIQi series offers three possible Lengths, L1, L2 and L3. There is a Length
mode that tells the scanner how to use these length variables. There are 3 length
modes possible; L1 as minimum length, L1, L2 and L3 as three fixed lengths and the
last mode is L1 as minimum length and L2 as maximum lengthirst the Length

Mode should be set, and then all 3 lengths should be set.

Hereis the following sequenceof bytes that need to be sent through the device
specific property to configure the Length mode:

Byte index | Value | Description

0 0x41 Operation: Setup Write

1 0x42 Group ID: Code 39

2 0x53 Function ID: Length Mode

© 2014 SocketMobile, Inc. 55184

Socket ScanAPI| Reference

0x00

Value: 0x00 L1 as minimum, Ox01 L12 L3 as 3 fixed lengths
0x02 L1 as minimum length and L2 as maximum length.

The following table shows the sequences of bytes for configuring the 3 length
accordingto the length mode:

Byte index | Value | Description

0 0x41 Operation: Setup Write

1 0x42 Group ID: Code 39

2 0x50 Function 1D:0x50 for Length L1, Ox51 for Length L2 and
0x52 for Length L3

3 0xO0C | Value to be set to the corresponding Length (L1 or L2 or L3)

NOTE: when Length mode and L1, L2 and L3 are all set to 0, it means that any lengt
of Code 39 barcode is decoded.

10.4 Interleaved 2 of 5 Length configuration
The decoded data length can be specified when scanning an Interleaved 2 of 5

barcode.

This feature is also different from one scanner model to another.
For the 7Ci, 7Mi, 7Pi, 8CBQi series:
There are 4 modes possible,

Only one discreet length (L1):

Byte index | Value | Description

0 0x09 Length of the command including this byte.

1 0xC6 Set Parameter Opcode

2 0x04 Status: always 0x04 for Host

3 0x00 Flags: always 0x00

4 OxFF Beep code: Not used, always OxFF

5 0x16 The parameter ID for Length 1

6 0xOD | The length valuefor L1

7 0x17 The parameter ID for Length 2

8 0x00 The length valuefor L2 z must be 0x00 for 1 discreet

Two discreet lengths (L1 and L2):

Byte index | Value | Description

0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode

2 0x04 Status: always 0x04 for Host

3 0x00 Flags: always 0x00

4 OxFF Beep code: Not used, always OxFF

© 2014 SocketMobile, Inc. 56/184

Socket ScanAPI| Reference

5 0x16 The parameter ID for Length 1

6 0xOD | The length valwe for Length 1, must be higher than the
Length 2 value

7 0x17 The parameter ID for Length 2

8 0x06 The length valuefor Length 2, must be lower than the Length
1 value

Any decoded data that is included in the length range:

Byte index | Value | Description

0 0x09 Length of the command including this byte.

1 0xC6 Set Parameter Opcode

2 0x04 Status: always 0x04 for Host

3 0x00 Flags: always 0x00

4 OxFF Beep code: Not used, always OxFF

5 0x16 The parameter ID for Length 1

6 0x04 The length valuefor L1 must be smaller than the second
length L2

7 0x17 The parameter ID for Length 2

8 0x10 The length valuefor L2 must be greater than the first length
L1

Any decoded data length (may result in misreads):

Byte index | Value | Description

0 0x09 Length of the ommand including this byte.

1 0OxC6 Set Parameter Opcode

2 0x04 Status: always 0x04 for Host

3 0x00 Flags: always 0x00

4 OxFF Beep code: Not used, always OxFF

5 0x16 The parameter ID for Length 1

6 0x00 Must be zero for any length

7 0x17 The paramete ID for Length 2

8 0x00 Must be zero for any length

For the 7Xi/7Qi series:

The 7Xi/Qi series offers three possible Lengths, L1, L2 and L3. There is a Length
mode that tells the scanner how to use these length variables. There are 3 length
modes possble; L1 as minimum length, L1, L2 and L3 as three fixed lengths and the
last mode is L1 as minimum length and L2 as maximum lengtlfirst the Length
Mode should be set, and then all 3 lengths should be set.

Here is the following sequence of bytes that real to be sent through the device
specific property to configure the Length mode:

© 2014 SocketMobile, Inc. 57/184

Socket ScanAPI| Reference

Byte index | Value | Description

0 0x41 Operation: Setup Write

0x44 Group ID:Interleaved 2 of 5

0x53 Function ID: Length Mode

WIN|F-

0x00 Value: 0x00 L1 as minimum, Ox01 L12 L3 as 3 fixed lengths
0x02 L1 as minimum length and L2 as maximum length.

The following table shows the sequences of bytes for configuring the 3 length
accordingto the length mode:

Byte index | Value | Description

0 0x41 Operation: Setup Write

1 0x44 Group ID:Interleaved 2 of 5

2 0x50 Function ID: 0x50 for Length L1, Ox51 for Length L2 and
0x52 for Length L3

3 0xOC | Value to be set to the corresponding Length (L1 or L2 or L3)

NOTE: when Length mode and L1, L2 and L3 are all set to 0, it meand #ray length
of Interleaved 2 of 5barcode is decoded.

10.5UPCA format

The 7XiQi scanner will transmit UPCA as EAN13 by default, which means that the
barcode will include a leading country code (0 for USA). This behavior can be changed
to transmit the UPCAade as a UPCA code (no leading country code) with the
kSktScanPropldDeviceSpecific property

The following table shows the content of the kSktScanPropldDeviceSpecific
property bytes array:

Byte index | Value | Description

0 0x41 Operation: Setup Write

1 0x4B Group ID: UPC/EAN

2 Ox5A Function ID: UPCA Transmitted as EAN13
3 0x00 Value: 0x00 disabled, 0x01 Enabled(default)

On the CHS 7Ci/7Di/7Mi/7Pi and CHS 8@Qi, the UPCA format is controlled by
enabling or disabling the Preamble.

The following table shows the content of the kSktScanPropldDeviceSpecific
property bytes array:

Byte index | Value | Description

0 0x07 Length of the command including this byte.

© 2014 SocketMobile, Inc. 58/184

Socket ScanAPI| Reference

0xC6 Set Parameter Opcode

0x04 Status: always 0x04 for Host

0x00 Flags: always 0x00

OxFF Beep code: Not used, always OxFF

0x22 The parameter ID forUPCA Preamble

OO WIN|F

0x00 0x00 for no Preamble (Data only), 0x01 for <System
Character><Data>, and 0x02 for <CountryCode><System
Character><Data>

11 API Functions
The ScanAPI has 6 entry point©pen Close Get Set Wait and Release

They all use a reference to either a ScanAPI object or a Device object. These
references are represented differently depending on the programming language
used.

For C/C++ language this reference iepresented asSKTHANDLE. This handle is
initialized during the open function and invalidated after calling the close function.

For Javaand C#,this reference is an interfaceThere are 2 interfaces, one for each
object it represents; ISktScanApi for representing a SeAPI object and
ISktScanDevice for representing a Device object. The ISktScanApi interface is a
superset of the ISktScanDevice.

Objective C uses the same concept and same name except it is called protocol
instead of interface.

A request to get these intefaces instantiated can be made by using the
SktClassFactory, ie: ISktSo&pi scanApi=SktClassFactory.createScanApilnstance();
Or in Objective C:

ld<ISktScanApi> scanApi=[SktClassFactory createScanApilnstance];

Having an interfaceor protocol instanceis not enough to use the object it

represents. The open must be invoked to initialize the object, and the close will
invalidate the object.

11.1 OpenFunction
The Open function opens either ScanABbject or a Deviceobject.

ScanAPI object
In order to open a SanAPI object, the device name should be set to NULL.

© 2014 SocketMobile, Inc. 59/184

Socket ScanAPI| Reference

The first open of a ScanAPI object initializes the ScanAPI layer and stdfte process
of listening for device connectiors.

Once this open is successful the application can use this ScanAPI objeatnezice to
call the wait API in its consumer logic.

If, for some reason, ScanAPI layer cannot open tBé&uetooth serial ports indicated
in its configuration, an error will be sent tothe application through a ScanObject
with the Message ID set to Event Meage ID.

By using the special ScanAPI No Listener GUID®DE p p $ *BEG2aP28-9177-

Vw&p" &o$SBSOEBOG !'0) xEI T OAOOOT A EAT AT A O A
a listener threadand that can be used for editing the ScanAPI configuratiorll

platforms include a define for the No Listener GUID as follows:
JavalSktScanApiSKTSCANAP|_CONFIGURATOR_GUID
C#:1SktScanApiSKTSCANAPI_CONFIGURATOR_GUID
C++/ObjectiveC.SKTSCANAPI_CONFIGURATOR_GUID

Device object

In order to open a device object, the devicel@D should be specified athe device
name parameter of the open API. The device GUID is retrieved from the device
arrival notification event.

The application will start to receive device asynchronous events as soon as it opens
the device object.

11.11 Syntax

C/C++:

SKTRESULT BScarOpen(
const char*pszDeviceName,
SKTHANDLE* phDevice

)

pszDeviceName
[in] the scanner device GUID in a string format to open a device or NULL to
open ScanAPI objeadr the No Listener GUID of
SKTSCANAPI_CONFIGURATOR_GUID

phDevice
[out] pointer to receive the referenceof the Deviceobject or ScanAPbbject.

C#

© 2014 SocketMobile, Inc. 60/184

Socket ScanAPI| Reference

long I1SktScanApi.Open(
String deviceName

);

deviceName:

[in] usually set to NULL in order to open ScanfAl object or it could be set to
ISktScanApiSKTSCANAPCONFIGURATOR_GUibopen ScanAPI object without a
listener thread. This last case is mostly used to editScanAPI configuration without
conflicting with another application using ScanAPI.

long ISktScanDevice.Open(
String deviceName

);

deviceName
[in] t he scanner device GUID in a string to open a device.

Java:
long 1SktScanApi.Open(
String deviceName

);

deviceName:

[in] usually set to NULL in order to open ScanAl object or it could be set to
ISktScanApiSKTSCANAPI_CONFIGURATOR_GdJtipen ScankRl object without a
listener thread. This last case is mostly used to editScanAPI configuration without
conflicting with another application using ScanAPI.

long ISktScanDevice.Open(
String deviceName

);

deviceName
[in] the scanner device GUIxsa string to open aparticular device. This
device GUID can be retrieved from the Device Arrival message event.

Objective C:
-(SKTRESULTYpen: (NSString*)deviceName;
of the protocol ISktScanApi.

deviceName:

[in] usually set to NULL in order to open ScanAPIbject or it could be set to
SKTSCANAPI_CONFIGURATOR_GaJdpen ScanAPI object without a listener
thread. Thislatter case is used to edit a ScanAPI configuration without conflicting
with another application using ScanAPI.

© 2014 SocketMobile, Inc. 61/184

Socket ScanAPI| Reference

Same message prototype for a dée but this time from the protocol
ISktScanDevice.
-(SKTRESULTYpen: (NNString*) deviceName;

deviceName:
[in] the scanner device GUIxsa string to open a particular device. This
device GUID can be retrieved from the Device Arrival message event.

11.1.2 Return value
If the function succeeds the return value iESKT_NOERROR

11.1.3 Remarks
A closecall should bedonefor each object that has been previously opened

If the open function is called more than once, it increases the reference count of the
object it opens. The same number of closshould be made in order to completely
close the object.

11.1.4 Example

C/C++:
SKTHANDLE hScanAPI=NULL;
SKTRESULT result=SktScanOpen(NULL,&hScanAPl);
if(SKTSUCCESS(result))

/I do whatever needs to be done

}

Javaor C#:
ISktScanApi_ScanApinull ;
_ScanApiSktClassFactorycreateScanApilnstandg;
long result=_scanApiOpenfull);
if (SktScanErrorsSKTSUCCE®Ssult))

/I do whatever needs to be done

}

Objective C:
SKTRESULResult==SKT_NOERRQR
id<ISktScanAp> s@nApi=nil;
scanApi=[SktClassFactorycreateScanApilnstancg
Result=[scanApiopen:nil];
if(SKTSUCCE®Result){

/I do whatever needs to be done

}

© 2014 SocketMobile, Inc. 62/184

Socket ScanAPI| Reference

See also:

Samplehandling asynchronous events of ScanAPI

11.1.5 Function | nformation

C/C++

Header

SktScanAPIl.h, include SktScanErrors.h,
SktScanTypes.h

Import library

ScanAPlL.lib

Minimum operating systems

Windows XP, Windows Mobile 5.0

C#

Reference

ScanAPIManaged.dll for Windows or
ScanAPIManagedWM.dIl for Windows
Mobile

Minimum operating systems

Windows XP, Windows Mobile 5.0

Java

Import com.SocketMobile.ScanAPI.ISktScanApi
com.SocketMobile.ScanAPI.SktClassFactg

Jar File ScanAPIFactory.jar
ScanAPl.jar

Minimum operating system Android 2.1

Objective C

Import SktSca\pi.h
ScanApi.h

Framework libScanAPl.a
ExternalAccessory.framework

Minimum operating system i0S 61

11.1.6 See Also
CloseFunction

© 2014 SocketMobile, Inc.

63184

Socket ScanAPI| Reference

11.2 CloseFunction
This function closesether a ScanAPI object or a Device object.

11.2.1 Syntax

C/C++:
KTRESULT BScarClose(
SKTHANDLE hDevice

)

hDevice
[in] Handle to the scanner device or ScanAPI to close.

Javaor C#:
long ISktScanDevice.Close(®r
long ISktScanApi.Close();

Objective C:
-(SKTRESULT¢lose;
From the protocol ISktScanApi otSktScanDevice.

11.2.2 Return Value
If the function succeeds it returnsESKT_NOERROR

11.2.3 Remarks
Any pending operation attached to this device will be aborted.

Once theobjectis closed, any subsequent operation using this handle will return an
error of invalid handle.

11.2.4 Example
SeeSamplehandling asynchronous events of ScanAPI

11.2.5 Function Information

C/C++

Header SktScanAPl.h, include SktScanErrors.h,
SktScanTypes.h

Import library ScanAPl.lib

Minimum operating systems Windows XP, Windows Mobile 5.0

C#

© 2014 SocketMobile, Inc. 64/184

Socket ScanAPI| Reference

Reference

ScanAPIManaged.dll for Windows or
ScanAPIManagedWM.dlIl for Windows
Mobile

Minimum operating systems

Windows XP, Windows Mobile 5.0

Java

Import com.SocketMobile.ScanAPI.ISktScanApi
com.SocketMobile.ScanAPl.SK&SsFactory
Jar File ScanAPIFactory.jar
ScanAPl.jar
Minimum operating system Android 2.1

Objective C

Import SktScanApi.h
ScanApi.h
Framework libScanAPl.a
ExternalAccessory.framework
Minimum operating system I0S 61

© 2014 SocketMobile, Inc.

65184

Socket ScanAPI| Reference

11.3 SetFunction

The Set function ®tsa property of an objectidentified by its reference. This function
returns immediately before the property setis actually done The final status should
be checled using the Wait function.

11.3.1 Syntax
C/C++:
SKTRESULT SktScanSet(

SKTHANDLE hDevice,
TSktScaObject * pSktObj

)

hDevice
[in] handle of the device.

pSktObj
[in] pointer to an allocated TSktScanObject that contains the property and its
value to set.

Javaor C#:
long ISktScanDevice.SBtroperty(
ISktScanObject scanObj

);

Or

Long ISktScanApi.Set®perty(
ISktScanObject scanObj

);

scanObj
[in] reference to a ScanObject that contains the property and its value to set.
The ScanObject should be created using the
SktClassFactory.createScanObject().

Objective C:
-(SKTRESULT3etProperty: (id<ISktScanObject> scanObj;
From the ISktScanApi or ISktScanDevice protocol.

scanObj
[in] reference to a ScanObject that contains the property and its value to set.
The ScanObject should be created using thgktClassFactory
createScanObject] message. Once tloisject is no longer useful it should be
freed by using the message releaseScanObiject of the same class,
[SktClassFactory releaseScanObject:scanObject];

© 2014 SocketMobile, Inc. 66/184

Socket ScanAPI| Reference

11.3.2 Return Value
If the function succeeds it returnsESKT_NOERROR

The return valueis ESKT_INVALIDHANDLEthe object referenceis invalid.

If the function is called before the completiorof an outstanding set or get operation,
it returns ESKT_PENDINGOPERATIONNOTCOMPLETED

11.3.3 Remarks

The Set functionallows an applicationto set a property of a scanner or &nAPI, or
to send a command such as triggering a scan.

The ScanObject contains a property structure that defirsghe property to set. This
structure has a property ID field, a property type field and a value field. These fields
must be set accordingly tahe property otherwise an error code will be returned.

In the success case, it will always return the completion code in the ScanObject that
must be retrieved with Wait function.

The Set function will fail if it is called before the completion of a pregus Set
function or Get function.

11.3.4 Example

C/C++:
void CMyAppDIg:OnTriggerButton()

SKTRESULT Result=ESKT_NOERROR;

TSktScanObject ScanObj;
memset(&ScanObj,&Gizeof{ScanObj));

/'initialize a ScanObject to

/I trigger the device
ScanObj.Property.IDkSktScanPropldTriggerDevice;
ScanObj.Property. Type=kSktScanPropTypeByte;
ScanObj.Property.Byte=kSktScanTriggerStart;

/I set the property with the
/I device handle
Result=SktScanSet(m_hDevice,&ScanObj);

/I check the Set result
if(SKTSUCCESS(Reslt)

m_TriggerBtn.Enable(FALSE);
else

/I display an error message
DisplayError(_T("Unable to trigger: %d"),Result);

Java:

© 2014 SocketMobile, Inc. 67/184

Socket ScanAPI| Reference

/l handler for the Trigger button

class TriggerButtonHandler implements Runnable {
private ISktScanDevice device=null ;
private ButtonField _button;

/I constructor

public TriggerButtonHandler(
ISktScanDevice device,
ButtonField button)

_device=device;
__button=button;

}
public void run() {

/Il create a ScanObject instance
ISktScanObject scanObj=
SktClassFactorycreateScanObje¢);

/I Initialize a ScanObiject to

/I Trigger the device

ISktScanProperty property=
scanObj.getProperty();

property.setID(
ISktScanProperty.propld.

kSktScanPropldTriggerDevide

property.setType(
ISktScanProperty.types.
kSktScanPropTypeByje

property.setByte(

ISktScanProperty.values.trigger.

kSktScanTriggerStar

I set the property with the device
I reference
long result=_deviceSetProperty(scanObj);

/I che ck the set result
if (SktScanErrorsSKTSUCCE®Ssult)){

_button.setVisualState{/ISUAL_STATE_DISAB)ED

}
else
{
/l display an error message
DisplayError("Unable to trigger: "“tresult);
}

© 2014 SocketMobile, Inc.

68/184

Socket ScanAPI| Reference

C#:
private void buttonTrigger_Clik(object sender,EventArgse)
{
/] create a ScanObject instance
ISkiScanObjecscanObj =
SktClassFactorycreateScanObject();

/I Initialize a ScanObject to
/I Trigger the device
scanObj.Property.ID =
ISkiScanPropertypropld .kSktScanPropldTriggerDevice;

scanObj.Property.Type =
ISkiScanPropertytypes.kSktScanPropTypeByte;

scanObj.Property.Byte =
ISkiScanPropertyvaluestrigger.kSktScanTriggerStart;

/I set the property with the device

/I reference

long result = _device.SetProperty(scanObj);
if (SktScanErrorsSKTSUCCESS(result))

{
buttonTrigger.Enabled =false;

}

else

/I display an error message
DisplayError("Unable to trigger: "+ result);
}
}

Objective C:

/I handler for the Trigger bu tton

-(void) triggerAction:(id)sender{
SKTRESULResult==SKT_NOERRQR
id<ISktScanObjectscanObjil;

scanObj=FktClassFactorcreate ScanObjedt

/I fill out the Scan Object property to trigger the

/I device

[[scanObjProperty]setID:kSktScanPropldTriggerDevicg
[[scanObjProperty]setTypekSktScanPropTypeBytg
[[scanObjProperty]setByte:kSktScanTriggerStarf;

/I send the Set property message
Result=[_scanapsetProperty:scanObj];

/I release the scanObj as it is not needed anymore
[SktClassFactoryeleaseScanObjecscanObjl;

if |SKTSUCCE@Result)){
[self DisplayErrorMessage@"Unable to trigger the device];

© 2014 SocketMobile, Inc. 69/184

Socket ScanAPI| Reference

11.3.5 Function Information

C/C++

Header

SktScanAPIl.h, idude SktScanErrors.h,
SktScanTypes.h

Import library

ScanAPlL.lib

Minimum operating systems

Windows XP, Windows Mobile 5.0

C#

Reference

ScanAPIManaged.dll for Windows or
ScanAPIManagedWM.dIl for Windows
Mobile

Minimum operating systems

Windows XP, Windws Mobile 5.0

Java

Import com.SocketMobile.ScanAPI.ISktScanApi
com.SocketMobile.ScanAPI.SktClassFactg

Jar File ScanAPIFactory.jar
ScanAPl.jar

Minimum operating system Android 2.1

Objective C

Import SktScanApi.h
ScanApi.h

Framework libScanAPl.a
ExternalAccessory.framework

Minimum operating system i0OS 61

11.3.6 See Also
GetFunction, Wait Function

© 2014 SocketMobile, Inc.

70184

Socket ScanAPI| Reference

11.4 GetFunction

The Get fundion retrieves a property from ScanAPI objecor from a deviceobject
identified by its reference. This function returns immediately, and its final result
should be checked by using Wait function.

1141 Syntax

C/C++:

KTRESULT BScarGet(
SKTHANDLE hDevice,
TSktScanObject* pSktObj

)

hDevice
[in] Handle to the device the property must be retrieved from.

pSktObj
[in] Pointer to a TSktScanObject that contains the property ID that needs to
be retrieved.

Javaor C#:
long ISktScanDevic&etProperty(
ISktScanObject scanObj

);

scanObj
[in] reference to a $anObject that contains the property ID that needs to be
retrieved. The ScanObject should be created using the
SktClassFactory.createScanObject().

Objective C:
-(SKTRESULTyetProperty: (id<ISktScanObject>) scanObj;
From the ISktScanApi or ISktScanDevigeotocol.

scanObj
[in] reference to a ScanObject that contains the property to get. The
ScanObiject should be created using the [SktClassFactory createScanObiject]
message. Once this object is no longer useful it should be freed using the
message releaseamObject of the same class, [SktClassFactory
releaseScanObject:scanObiject];

© 2014 SocketMobile, Inc. 71/184

Socket ScanAPI| Reference

11.4.2
If the function succeeds it returns ESKT_NOERROR.

The return value is ESKT_INVALIDHANDLE if tobject referenceis invalid.

Return Value

If the function is called before thecompletion of an outstanding set or get operation,

it returns ESKT_PENDINGOPERATIONNOTCOMPLETED.

11.4.3

Remarks

This function returns immediately. In the success case, it will always return the
completion code in the ScanObject that must be retrieved with Waitinction. The
Wait function returns the ScanObject structure with the Property field filled with the
result of the operation if it has been successful. The success code can be retrikeve
from that same structurein the Result field.

11.4.4

Example

C/C++:

/I Get device friendly name
SKTRESULT GetFriendlyName(

}

IN SKTHANDLE hDevice,
)

SKTRESULT Result=ESKT_NOERROR;

TSktScanObject ScanObj;
memset(&ScanObj,Gizeof(ScanObj);

ScanObj.Property.ID=kSktScanPropldFriendlyNameDevice;
ScanObj.Property. Type=kSkt&mPropTypeNone;

I get the friendly name here

/I the final result should be fetched

/l'in the Get Complete handler
Result=SktScanGet(hDevice,&ScanObj);

return Result;

Javaor C#:

/I get device friendly name
long GetFriendlyName(ISktScanDevicdevice)

{

long result=SktScanErrorsE SKT_NOERROR

ISktScanObject scanObj;

scanObj=SktClassFactorgreateScanObje¢};

ISktScanProperty property;
property=scanObj.getProperty();
property.setID(ISktScanProperty.propld.

© 2014 SocketMobile, Inc.

72/184

Socket ScanAPI| Reference

kSktScanPropldFriedlyNameDevicg
property.setType(ISktScanProperty.types.
kSktScanPropTypeNong

/I get the friendly name here

/I the final result should be fetched
/l'in the get complete handler
result=device GetProperty(scanObj);
return result;

}
Objective C:

Il Get the device friendly name

-(SKTRESUL)GetFriendlyName{
SKTRESULResult==SKT_NOERRQR
id<ISktScanObjectscanObjmil ;

/l create a Scan Object
scanObj=FktClassFactoncreateScanObjedt

/I fill out the Scan Object property to query the

/I device friendly name
[[scanObjProperty]setlD:kSktScanPropldFriendlyNameDevicg
[[scanObjProperty]setTypekSktScanPropTypeNong

/I send the Get property message
Result=[_scanapgetProperty:scanObj;

Il release the scanObj as it is not needed anymore
[SktClassFactoryeleaseScanObjecscanObj];

return Result;

11.4.5 Function Information

C/C++

Header SktScanAPIl.h, include SktScanErrors.h,
SktScanTypes.h

Import library ScanAPl.lIb

Minimum operating systems Windows XP, Windows Mobile 5.0

C#

Reference ScanAPIManaged.dll for Windows or

ScanAPIManagedWM.dIl for Windows
Mobile

Minimum operating systems

Windows XP, Windows Mobile 5.0

Java

Import

com.SocketMobile.ScanAPI.ISktScaniAp
com.SocketMobile.ScanAPI.SktClassFactd

© 2014 SocketMobile, Inc.

73184

Socket ScanAPI| Reference

Jar File ScanAPIFactory.jar
ScanAPl.jar
Minimum operating system Android 2.1

Objective C

Import SktScanApi.h
ScanApi.h
Framework libScanAPl.a

ExternalAccessory.framework

Minimum operating system

10S6.1

11.4.6 See Also

SetFunction, Wait Function

© 2014 SocketMobile, Inc.

74/184

Socket ScanAPI| Reference

11.5Wait Function

The Wait function waits for any asynchronous eventsOnly a ScanAPI object can be
usedas reference for thewait function.

Most of the time, applications using ScanAPlI, use a timer to consume the ScanAPI
asynchronous events. In this case, the wait function can be called with 0 as timeout
so that it returns immediately with timeout result if there is no ScanObject or with
no error result if it has retrieved a ScanObject.

1151 Syntax
C/C++:

KTRESULT BScarwait(
SKTHANDLE hScanAPI,
TSktScanObject ppSktObj
DWORD dwTimeout

)

hScanAPI
[in] handle to ScanAPDbbject. This handle cannot be a handle of a scanner
device.If this handle is not a ScanARlbject, this function will return an
invalid handle error.

ppSktObj
[out] pointer to a TSktScanObjecpointer. TSktScanObjecis allocated by
ScanAPI. This object must be released when it is no longer needed.

dwTimeout
[in] a timeout value expressed in milliseconds. The timeout cannot be bigger
than 10000ms otherwise an error will be returned.

Java:

long ISktScanApWaitForScanObjedt
ISktScanObjedi] scanObj
long ulTimeout

);

scanObj
[out] reference to a ScanObject thas dlocated by ScanAPI. This object must
be released when it is no longer needed

ulTimeout

© 2014 SocketMobile, Inc. 75184

