

ScanAPI Reference

Release R8

March 18, 2015

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 2/184

4/ 2014 Document# 6410 -00319 C

COPYRIGHT NOTICE

Copyright © 2014 Socket Mobile, Inc. All rights reserved.

Socket, the Socket logo, Battery Friendly, Socket Bluetooth Cordless Hand Scanner, and SocketScan are trademarks or
registered trademarks of Socket Mobile, Inc. Bluetooth and the Bluetooth logos are registered trademarks owned by Bluetooth
SIG, Inc., U.S.A. and licensed to Socket Mobile, Inc. All other brand and product names are trademarks of their respective
holders.

The Socket Bluetooth Cordless Hand Scanner includes technology licensed under United States Patent Numbers 5,902,991,
7,429,000 B1 and D526,320 S.

Reproduction of the contents of this manual without the permission of Socket Mobile is expressly prohibited. Please be aware
that the products described in this manual may change without notice. Feel free to contact Socket Mobile at:

Socket Mobile, Inc.
39700 Eureka Drive, Newark, CA 94560-4808, USA
+1-510-933-3000
USA/Canada Toll-free: 1-800-552-3300
http://www.socketmobile.com/contact

Other than the above, Socket Mobile can assume no responsibility for anything resulting from the application of information
contained in this manual.

Please refrain from any applications of the Socket Bluetooth Cordless Hand Scanner that are not described in this manual.
Please refrain from disassembling the Bluetooth Cordless Hand Scanner. Disassembly of this device will void the product
warranty.

You can track new product releases, software updates and technical bulletins by visiting the Socket Mobile website at:
http://www.socketmobile.com .

http://www.socketmobile.com/contact
http://www.socketmobile.com/

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 3/184

Table of content s

COPYRIGHT NOTICE .. 2

1 Scanner connection overview .. 7
1.1 Scanner connection information .. 7

2 ScanAPI Introduction ... 10
3 SoftScan Feature .. 11

3.1 iOS requirements ... 11
3.2 Android requirements .. 12

4 Concept ... 13

4.1 ScanAPI object .. 13
4.2 Device object .. 13

4.3 ScanObject .. 14

4.4 Using ScanAPI .. 14

4.5 ScanAPI configuration .. 15

4.6 Get or Set a property.. 15

4.7 Example of sending a command .. 16

4.8 Handling asynchronous events or completion events 25

4.9 Termination ... 26

5 ScanAPI Helper (available for Java, C# and Objective C) 26

5.1 Handling the ScanAPI Helper notifications ... 27

5.2 Set ScanAPI Helper notification... 34

5.3 Open ScanAPI Helper ... 34

5.4 Close ScanAPI Helper ... 34

5.5 Scanner arrival ... 34

5.6 Decoded data notification .. 35

5.7 Scanner removal .. 35

5.8 Is there a connected Scanner ... 35

5.9 Get the list of scanners... 36

5.10 No Device Connected item ... 36

6 IDE Integration ... 36

6.1 C/C++ Version .. 36

6.2 Java Version ... 36

6.3 C# Version .. 37

6.4 Objective C Xcode integration ... 38

7 Recommendations ... 39
7.1 General.. 39

7.2 Android ... 39
7.3 iOS .. 40

8 Device Connection and Disconnection process ... 40

8.1 Initial Connection .. 40

8.2 Subsequent Connection ... 41

8.3 Reconnection ... 41

8.4 Disconnection .. 41

8.5 Roaming ... 41

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 4/184

8.6 Socket EZ Pair feature.. 42

9 Data Editing... 42
9.1 Profile ... 43

9.2 Trigger .. 44
9.3 Operations ... 45

9.4 Import-Export ... 50
10 Specific scanner configurations .. 52

10.1 Adaptive Scanning ... 53
10.2 Scan Angle .. 53

10.3 Code 39 Length configuration .. 54
10.4 Interleaved 2 of 5 Length configuration ... 56

10.5 UPCA format ... 58

11 API Functions .. 59

11.1 Open Function .. 59

11.2 Close Function .. 64

11.3 Set Function .. 66

11.4 Get Function ... 71

11.5 Wait Function ... 75

11.6 Release Function .. 78

12 ScanObject ... 80

13 Asynchronous messages and events .. 81

13.1 Device Arrival ... 81

13.2 Device Removal .. 81

13.3 Terminate ... 81

13.4 Set Complete ... 81

13.5 Get Complete .. 82

13.6 Events ... 82

14 Introduction to Properties .. 87

15 ScanAPI object properties ... 88

15.1 Property kSktScanPropIdAbort ... 88

15.2 Property kSktScanPropIdVersion .. 89

15.3 Property kSktScanPropIdInterfaceVersion ... 91

15.4 Property kSktScanPropIdConfiguration .. 92

15.5 Property kSktScanPropIdDataConfirmationMode 94

15.6 Property kSktScanPropIdDataConfirmationAction 96

15.7 Property kSktScanPropIdMonitorMode .. 97

15.8 Property kSktScanPropIdSoftScanStatus .. 99

15.9 Property kSktScanPropIdDataEditingProfile .. 101
15.10 Property kSktScanPropIdDataEditingCurrentProfile 101

15.11 Property kSktScanPropIdDataEditingTriggerSymbologies 102
15.12 Property kSktScanPropIdDataEditingTriggerMinLength............................ 103

15.13 Property kSktScanPropIdDataEditingTriggerMaxLength 104
15.14 Property kSktScanPropIdDataEditingTriggerStartsBy 105

15.15 Property kSktScanPropIdDataEditingTriggerEndsWith 106
15.16 Property kSktScanPropIdDataEditingTriggerContains 106

15.17 Property kSktScanPropIdDataEditingOperation ... 107

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 5/184

15.18 Property kSktScanPropIdSymbologies .. 108

16 Device object properties ... 109

16.1 Property kSktScanPropIdVersionDevice ... 109

16.2 Property kSktScanPropIdDeviceType ... 109

16.3 Property kSktScanPropIdDeviceSpecific ... 111

16.4 Property kSktScanPropIdSymbologyDevice ... 112

16.5 Property kSktScanPropIdTriggerDevice ... 115

16.6 Property kSktScanPropIdApplyConfigDevice ... 116

16.7 Property kSktScanPropIdPreambleDevice .. 116

16.8 Property kSktScanPropIdPostambleDevice .. 117

16.9 Property kSktScanPropIdCapabilitiesDevice .. 117

16.10 Property kSktScanPropIdChangeIdDevice .. 119

16.11 Property kSktScanPropIdFriendlyNameDevice 120

16.12 Property kSktScanPropIdSecurityModeDevice 123

16.13 Property kSktScanPropIdPinCodeDevice .. 124

16.14 Property kSktScanPropIdDeletePairingBondingDevice 124

16.15 Property kSktScanPropIdRestoreFactoryDefaultsDevice 125

16.16 Property kSktScanPropIdSetPowerOffDevice ... 125

16.17 Property kSktScanPropIdButtonStatusDevice .. 126

16.18 Property kSktScanPropIdSoundConfigDevice ... 127

16.19 Property kSktScanPropIdTimersDevice .. 130

16.20 Property kSktScanPropIdLocalAcknowledgmentDevice 131

16.21 Property kSktScanPropIdDataConfirmationDevice 132

16.22 Property kSktScanPropIdBatteryLevelDevice .. 134

16.23 Property kSktScanPropIdLocalDecodeActionDevice 134

16.24 Property kSktScanPropIdBluetoothAddress ... 135

16.25 Property kSktScanPropIdStatisticCountersDevice 136

16.26 Property kSktScanPropIdRumbleConfigDevice 139

16.27 Property kSktScanPropIdProfileConfigDevice .. 141

16.28 Property kSktScanPropIdDisconnectDevice ... 142

16.29 Property kSktScanPropIdDataStoreDevice ... 143

16.30 Property kSktScanPropIdNotificationsDevice .. 144

16.31 Property kSktScanPropIdConnectReasonDevice 145

16.32 Property kSktScanPropIdPowerStateDevice... 146

16.33 Property kSktScanPropIdStartUpRoleSPPDevice 147

16.34 Property kSktScanPropIdConnectionBeepConfigDevice 148

16.35 Property kSktScanPropIdFlashDevice .. 149

16.36 Property kSktScanPropIdOverlayViewDevice ... 150
16.37 Property kSktScanPropIdStandConfigDevice ... 153

17 ScanAPI Error handling and definitions ... 154

17.1 Error codes ... 157

18 Symbologies Enumeration .. 159

19 Data confirmation feature ... 160

20 Sample handling asynchronous events of ScanAPI .. 162

21 SktScanAPIOwnership (available for Java platforms) 167

21.1 Constructor... 168

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 6/184

21.2 register ... 170

21.3 unregister ... 171

21.4 askForOwnership ... 172

21.5 claimOwnership ... 173

21.6 releaseOwnership .. 175

21.7 Notification onScanApiOwnershipChange .. 176

22 SoftScan feature... 179
22.1 Usage... 179

22.2 iOS integration. .. 180
22.3 Android integration .. 181

23 History... 181

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 7/184

1 Scanner connection overview

This SDK is designed for use with the Socket CHS 7 series scanners on several
OS platforms including Apple iOS, Android, Windows Desktop and Windows
Mobile 6.x. The intended usage is to develop a native application that includes
built in support for the Socket 7 series scanners. This SDK gives the full
programmatic access to a connected 7 series scanner to customize the scanner
Symbology and data support, manages scanner feedback messages and
functions or modifies default scanner behavior.

Before beginning the process of implementing the ScanAPI into an application it
is first recommended reading through this intro regarding the connection process
of the scanner as this might answer many questions in regards to how an
application communicates with the scanner.

1.1 Scanner connection information

The connection information below applies mainly to the Android and Windows
operating systems.

For the iOS platform the connection is simplified based on the host iOS handling
the connection. It is recommended to refer to the readme.rtf file from the ScanAPI
SDK DMG install that is part of the ScanAPI iOS SDK.

1.1.1 Scanner HID mode

The CHS 7 series scanners are shipped by default in HID profile mode and will
display the following friendly name:

For the 7Xi/7Qi series:
Socket 7Xi [xxxxxx] (where xôs are the last 6 digits of the BD address of the
scanner)

Or for the 7Ci/Mi/Pi & 8Ci/8Qi series:

Socket CHS [xxxxxx]

In this mode the scanner functions as a standard HID keyboard device and can
be tested in this mode as if it is a keyboard.
It will NOT work with an application using ScanAPI.

NOTE: if the scanner in HID mode is discovered and tested it may cause conflicts

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 8/184

with discovering and using the scanner in SPP mode due to the fact that some
devices will cache the name and service information of the device.

Socket recommends that the pairing information is removed by deleting or
unpairing the device using the host device Bluetooth manager before connecting
the scanner in a different mode.

1.1.2 SPP Mode for the SDK

The SPP Mode is the required mode for the Scanner to be able to communicate
with an application using ScanAPI.

The SPP Mode has 2 configurations. One configuration called Acceptor, and
another called Initiator.

In Acceptor configuration, the scanner is discoverable and connectable and
basically waits for a host to connect. The scanner indicates that it is in this mode
by slowly flashing the blue LED.

In Initiator configuration, the scanner knows the Bluetooth address of the host to
connect to. Each time the scanner is powered on in this configuration, it will try to
connect to the host corresponding to the Bluetooth address it has saved.

The scanner indicates that it is in this mode by quicly flashing the blue LED. The
scanner stays in this mode until it successfully connects to the host or after a 2
minutes timeout occurs, which it will signal by doing a long beep. At this point the
scanner can be powered off and on to retry to connect to the host.

1.1.3 Initial connection to iOS host or to any host for a 7Ci,M and P
series

The process of connecting a scanner to an iOS host device or a 7Ci, M and P
scanner to any host device is the same and can be summarized to these simple
steps.
Step 1: The scanner must be in Acceptor mode.
For an iOS device, the scanner can be in configured in Acceptor mode by
scanning a barcode that has the value of ñ#FNC IOS ACCEPTOR
000000000000#ò for a 7Xi/7Qi/8Qi or ñ#FNB00F40002#ò for a 7Ci/Mi/Pi/8Ci/8Qi.

For any other host Device (not iOS) the scanner can be configured in Acceptor
mode by scanning a barcode that has the value of ñ#FNB00F40000#ò for a
7Ci/Mi/Pi/8Ci/8Qi series, or ñ#FNC SPP ACCEPTOR 0000000000#ò for a
7Xi/7Qi/8Qi series scanner.
Note: the 8Qi and 7Xi/Qi can read either the 1D or 2D configuration barcodes.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 9/184

The barcode can be a 2D barcode for a 7Xi/7Qi/8Qi scanner only.

Step 2: Discover and pair the scanner from the host.
By using the Bluetooth settings of your host device, discover and pair the
scanner. If a PIN code is request use ñ0000ò (4 zeros) and the pairing should
complete.
For iOS host device this is the final step. The scanner can now be used by the
application using ScanAPI.

Step 3: (For all hosts but iOS devices) Instruct the scanner to connect back to the
host by using Socket EZ Pair application.

Once the scanner is configured correctly, it will always try to reconnect back to
the host each time it is powered on or back in range.

1.1.4 Simplified connection process to any host but iOS devices

There is a simplified process that can be used when the host Bluetooth device
address is known either by printing out barcode or by using 7xi/7Qi with Socket
EzPair.

This process isnôt possible for iOS device as there is no API to retrieve the iOS
Bluetooth address and the iOS devices wonôt authorize a scanner to connect and
pair unless the Bluetooth Settings page is displayed on the screen.

The following steps for 7Xi/7Qi/8Qi series is as simple as scanning a 2D barcode
that has the value: ñ#FNC SPP INITIATOR xxxxxxxxxxxx#ò with xxxxxxxxxxxx
replaced by the host Bluetooth address, with letters in upper case, or by scanning
out of the Socket EZ Pair screen the 2D barcode.

The same principle for 7Ci/Mi/Pi/8Ci/8Qi series scanner, by scanning a Code 128
barcode that has the value: ñ#FNIxxxxxxxxxxxx#ò with xxxxxxxxxxxx replaced by
the host Bluetooth address. NOTE the 7Ci/Mi/Pi/8Ci/8Qi series scanners should
be first and only once set to SPP mode by scanning the ñ#FNB00F40000#ò Code
128 barcode.

1.1.5 Connection Process integration

For the 7Ci/Mi/Pi/8Ci series scanners there are two methods that canbe used to
configure the scanner to be an initiator to the host device:

Method 1:

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 10/184

Implement the 1D EZ Pair process in your app to select a pre-discovered
scanner and configure it to be an initiator to the host device. This process is
explained in paragraph 8.6 Socket EZ Pair feature.

Method 2:
-Manually create an EZ Pair barcode with each host system Bluetooth address
so that the 1D scanner simply needs to scan the barcode to configure it as an
initiator to the host device

For the 7Xi/7Qi/8Qi series scanners you can just present the EZ pair barcode as
part of your application setup process.

Either way once that part is done your app just needs to have ScanAPI initialized
and waiting to receive the incoming connection of the scanner.

2 ScanAPI Introduction
ScanAPI delivers an application programming interface (API) to control and
configure Socket Bluetooth Cordless Handled Scanners (CHS) connected to a host
computer.

A ScanApi Helper component is provided for Objective C, C# and Java platforms to
integrate more easily ScanAPI into an application. ScanAPI Helper handles the
asynchronous events through callbacks, and gives an easy way to manipulate the
asynchronous commands an application can send to a CHS by providing a callback
mechanism that is invoked when the command response is received.

A CHS has severall properties that can be retrieved, modified or actioned.
CHS properties can be by example a symbology state, its friendly name, or triggering
a scan.

This API is asynchronous. The property operation is therefore a 2-step process. The
application sends a property get or set command and if this is successful, a property
get or set complete event is received with the CHS result of that property command.

At any time a CHS can send events to the host that are retrieved using the same
mechanism as the completion of the property operation.

ScanAPI has only one entry point to receive these asynchronous events making it
very easy to manage.

The other benefit of this asynchronous API is to be able to drive a scanner from a
graphical user interface (GUI) application without danger of blocking the user
interface while waiting for a lengthy operation to complete.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 11/184

3 SoftScan Feature
The SoftScan is a feature that makes the host device built-in camera acting as a
barcode scanner. This feature is implemented using iOS Soft scanner feature builtin
in the iOS7.0 version of the OS and with a third -party technology on Android that
requires and therefore the developer should comply to the third-party license
agreement.

Currently the SoftScan feature is available only on iOS and Android based devices.

This feature is not activated by default. In order to activate it, the application should
set the ScanAPI kSktScanPropIdSoftScanStatus to kSktScanSupported, and then set
the same property to kSktScanEnabledSoftScan

As soon as ScanAPI is initialized and SoftScan is enabled, a SoftScanner device
arrival event is generated.
A device removal event is generated when the SoftScan feature is disabled by using
the same ScanAPI property with its value sets to kSktScanDisableSoftScan.

4ÈÅ 3ÏÆÔ3ÃÁÎÎÅÒ ÄÏÅÓÎȭÔ ÓÕÐÐÏÒÔ ÁÌÌ ÔÈÅ ÐÒÏÐÅÒÔÉÅÓ ÄÅÓÃÒÉÂÅÄ ÉÎ ÔÈÉÓ Äocument and
returns a ESKT_NOTSUPPORTED error for them.

An application can turn off this feature by setting the property
kSktScanPropIdSoftScanStatus to kSktScanNotSupported. This will return an error
ESKT_INVALIDOPERATION if the SoftScan is not disabled first.

3.1 iOS requirements

The ScanAPI library for iOS supports iOS6.0 and higher of the OS. The SoftScan
feature is supported only on device running iOS7.0 or higher. Therefore if an
application tries to enable the SoftScanner an error ESKT_NOTSUPPORTED will be
returned when the iOS version is not iOS7.0 or higher.

In the original ScanAPI version the only required frameworks is:

- ExternalAccessory.framework

Since SoftScan is now part of ScanAPI, 2 other frameworks are now required and
they are:

- AVFoundation.framework,
- AudioToolbox.framework

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 12/184

Last, in order to have the SoftScan making a beep, the app resources bundle should
contain a wav file named softscanbeep.wav. One is provided with the SDK but it can
be replaced by anything other wav file as long as it has the same file name.

)Æ ÔÈÉÓ ÆÉÌÅ ÉÓ ÎÏÔ ÐÒÅÓÅÎÔ ÔÈÅ 3ÏÆÔ3ÃÁÎ ×ÏÎȭÔ ÂÅÅÐ ×ÈÅÎ Á ÂÁÒÃÏÄÅ ÈÁÓ ÂÅÅÎ
successfully decoded.

3.2 Android requirements

The overlay view is a requirement for the SoftScanner in order to display the video
output in the application. This is implemented through an Activity that must be
added to the application manifest. This activity is defined as
com.SocketMobile.ScanAPI.SoftScanActivity.
Here are the lines that should be added to the application manifest inside its
application tag or service tag:
<activity
 ÁÎÄÒÏÉÄȡÎÁÍÅЀȱÃÏÍȢ3ÏÃËÅÔ-ÏÂÉÌÅȢ3ÃÁÎ!0)Ȣ3ÏÆÔ3ÃÁÎ!ÃÔÉÖÉÔÙȱ
 ÁÎÄÒÏÉÄȡÃÏÎÆÉÇ#ÈÁÎÇÅÓЀȱËÅÙÂÏÁÒÄ(ÉÄÄÅÎȿÏÒÉÅÎÔÁÔÉÏÎȱ
 ÁÎÄÒÏÉÄȡÓÃÒÅÅÎ/ÒÉÅÎÔÁÔÉÏÎЀȱÌÁÎÄÓÃÁÐÅȱ
 ÁÎÄÒÏÉÄȡÔÈÅÍÅЀȱͽÁÎÄÒÏÉÄȡÓÔÙÌÅȾ4ÈÅÍÅȢ.Ï4ÉÔÌÅ"ÁÒȱ ȾЄ

SoftScan feature uses a third party application called Barcode Scanner (ZXing)
application, that needs to be installed on the device and can be found through the
Google Play Store as free download.

It is recommended the application using ScanAPI to check first the presence of this
third party application prior offering the SoftScan feature to the user.

The application context must be passed to the SoftScan by using the
kSktScanPropIdOverlayViewDevice property. This property accepts an object as
parameter. This object should be HashMap that contains the context of the
application at the key specified by kSktScanSoftScanContext.
Here are few lines showing how to pass the application context to SoftScan:

Map<String,Object> overlay=new HashMap<String,Object>();
overlay.put(ISktScanProperty.values.softScanContext.kSktScanSoftScanContext,_my
Context);
scanApiHelper.postSetOverlayView(deviceInfo,overlay);

These few lines can be added in the Device Arrival if the device is a SoftScan device.

Once these requirements are met, the application can trigger a scan by using the
property kSktScanPropIdTriggerDevice with kSktScanTriggerStart as parameter
and by providing the SoftScan device information.

The trigger operation can return the following errors:

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 13/184

ESKT_UNABLEOPENDEVICE (-27): For some reason SoftScan was unable to launch
the Barcode Scanner (ZXing) application, check if the SoftScan activity has been
added in the application manifest file.

ESKT_NOTSUPPORTED (-15): The SoftScan feature is not supported on the host,
check if the Barcode Scanner (ZXing) application is installed on the device.

ESKT_OVERLAYVIEWNOTSET (-ωπɊȡ 4ÈÅ 3ÏÆÔ3ÃÁÎ ÒÅÑÕÉÒÅÄ ÏÖÅÒÌÁÙ ÖÉÅ× ÈÁÓÎȭÔ ÂÅÅÎ
set prior triggering the scanner, check if the property
kSktScanPropIdOverlayViewDevice has been set with the application context prior
triggering the SoftScan device.

4 Concept
This API defines 3 main objects: ScanAPI object, Device object and ScanObject.

4.1 ScanAPI object

This object controls the API.

In order to use ScanAPI, this object must be opened first and this first open
initializes ScanAPI. The handle returned from this open must be used for any
subsequent ScanAPI operations.

All asynchronous events are received through this ScanAPI object.

The ScanAPI object has few properties that can be retrieved or modified.

When an application is ready to use ScanAPI, it can open it by using the ScanAPI
Open API with no device name in the parameter.

4.2 Device object

The Device object represents a CHS. In order to use and receive events from a CHS,
its corresponding Device object must be opened.

The handle returned from opening a Device object is used by the application to
retrieve or modify a particular property of the CHS.

ScanAPI notifies the application each time a Device Object is available by sending a
Device Arrival event with a UUID identifying the Device Object. The application can
open this particular Device Object by specifying this UUID in the ScanAPI open API.

If a CHS disconnects from the host, a Device Removal is sent by ScanAPI to the
application to indicate that the matching Device Object is no longer valid and the
application should close it if it has it opened.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 14/184

4.3 ScanObject

The ScanObject is a data placeholder used for exchanging information between the
application and the CHS or ScanAPI object.

A ScanObject holds 2 kinds of information: a property and a message.

When a ScanObject is sent from the application to ScanAPI, only the property
information in ScanObject is relevant.

When a ScanObject is received from ScanAPI by the application, the message
infor mation is always relevant and depending on the message received the property
information might be relevant.

ScanAPI creates a ScanObject each time it receives an asynchronous event, and in
this case the application must release this ScanObject by calling a ScanAPI release
API.

The application can create a ScanObject to send specific information to either a
Device or ScanAPI. In this case the application is responsible for releasing the
ScanObject correctly.

4.4 Using ScanAPI

An application has two things to do in order to setup ScanAPI correctly. It needs first
to open ScanAPI by specifying no name in the open parameter API, and then starts
either a timer or a thread to consume the asynchronous events coming from
ScanAPI.

When a CHS connects to the host, ScanAPI sends a Device Arrival event to the
application through the applicationȭÓ ScanAPI consumer logic, usually a timer loop
calling into ScanAPI.

The Device Arrival event contains an UUID identifying a Device Object that
represents a CHS. The application can open the Device Object by specifying this
UUID in the ScanAPI open function.

Once the Device Object is opened, the application can retrieve or modify the CHS
properties by using the get property or set property API.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 15/184

The get property and set property APIs are asynchronous. These APIs return
success if the property has been sent correctly to the CHS. The property completion
event is received in the application consumer.

If the CHS doesn't respond to a get or set property within the timeout period (about
5 seconds), for whatever reason, a matching property get complete or set complete
event is generated with a timeout error.

Only one property can be sent at the time to the CHS. An error occurs if a property is
sent prior the completion of the previous property operation.

ScanAPI sends a Device Removal event when a CHS disconnects from the host. The
application should close the matching Device Object if it has it opened.

4.5 ScanAPI configuration

ScanAPI has one thread listening on a serial communication port. This configuration
can be retrieved or modified by creating a ScanObject and setting its property to
ScanAPI configuration property. The ScanObject can be sent to ScanAPI using the get
property or set property API to respectively retrieve or modify this property.

Modifying the ScanAPI configuration will prompt the listener thread to restart. An
error event is generated if the configuration is incorrect.

Each time the listener starts, a Listener Start event is generated.

ScanAPI will drop the connection to the CHS if it was connected during ScanAPI
configuration configuration change.

Please refer to the ScanAPI object properties paragraph for more information.

4.6 Get or Set a property

The ScanAPI object and the Device object have both properties that can be retrieved
or altered by using the get property or set property API.

The process of getting or setting a property is simple. A ScanObject holds a Property
field. The application must create a ScanObject instance and fill its Property member
according to the property of the object it would like to modify.

A property has an ID, a data type, data value and a context. They must be specified
accordingly to the characteristics of the property that needs to be retrieved or
modified.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 16/184

The context is a field an application can use for maintaining a context. This context is
returned when a property set or get operation completes.

Once the property member of the ScanObject has been filled correctly, the
application can call the get or set API with the reference of the object to which it
wishes to retrieve or modify the property.

If the API returns success, the application can wait for the completion to be received
through the wait API.

An application cannot send multiple properties to the same object before the
previous set or get property operation has been fully completed. An error is
generated during the Set or Get API call if the previous property of the same object
ÈÁÓÎȭÔ ÂÅÅÎ ÃÏÍÐÌÅÔÅÄ ÙÅÔȢ

The application receives the complete event through its ScanAPI consumer logic that
uses the wait API with the ScanAPI object reference.

A ScanObject that is received from ScanAPI has always its message field filled out.

The property complete event is received in a ScanObject with a Message ID set to a
Get Complete ID or Set Complete ID.

The Message has a result field that indicates if the completion of the get or set
property has been successful or not. The Property member of the ScanObject
contains the Property ID matching to the one that has been set, and in case of
success, the data type and value are filled as expected.

An important point is the fact that a property set or get can fail for many reasons,
and some of them will require the application to retry the operation and some
should just be taken into consideration. For example, if a property returns a
REQUEST TIMEOUT error because the scanner is out of the range for a brief instant
or busy receiving decoded data, having retry logic can fix this issue.

4.7 Example of sending a command

This section describes the steps for sending a command to a device.

,ÅÔȭÓ ÉÍÁÇÉÎÅ ÁÎ ÁÐÐÌÉÃÁÔÉÏÎ ÕÓÉÎÇ 3ÃÁÎ!0) ÈÁÓ Á ÂÕÔÔÏÎ ÏÎ ÉÔÓ 5) ÔÏ ÔÒÉÇÇÅÒ Á ÓÃÁÎȢ

For clarity purposes we assume the application correctly handles the connection of
the scanner and has kept a handle to ScanAPI and to this scanner accessible.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 17/184

The application has ScanAPI consumer logic that will receive the messages from
ScanAPI.
This consumer logic uses the wait API with the ScanAPI object reference that has
been previously opened with the open API with NULL as device name.

The button handler creates a ScanObject, and fills the Property part with a property
ID set to kSktScanPropIdTriggerDevice, a property type set to byte, and the property
byte value set to kSktScanTriggerStart as explained in the paragraph 16.5 Property
kSktScanPropIdTriggerDevice .

This button handler uses the set API to send this property to the device identified by
its reference. If the return code of this API is successful, the button handler can then
disable the trigger button indicating the trigger is in progress.

The applicationȭÓ ScanAPI consumer logic that was waiting for ScanAPI messages by
using the wait API should receive the Set Complete message with the property ID set
to kSktScanPropIdTriggerDevice.

The result indicates if the trigger worked. At that point the device should have the
aim light turned on and should be ready to scan and decode data. The application
trigger button can then be enabled.

C++ Source code sample:

void CMyAppDlg::OnTriggerButton()
{
 SKTRESULT Result=ESKT_NOERROR;

 TSktScanObject ScanObj;
 memset(&ScanObj,0,sizeof(ScanObj));
 // initialize a ScanObject to
 // trigger the device
 ScanObj.Property.ID=kSktScanPropIdTriggerDevice;
 ScanObj.Property.Type=kSktScanPropTypeByte;
 ScanObj.Property.Byte=kSktScanTriggerStart;

 // set the property with the
 // device handle
 Result=SktScanSet(m_hDevice,&ScanObj);

 // check the Set result
 if(SKTSUCCESS(Result))
 m_TriggerBtn.Enable(FALSE);
 else
 {
 // display an error message
 DisplayError(_T("Unable to trigger: %d"),Result);
 }
}

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 18/184

SKTRESULT CMyAppDlg::Consume(
 IN SKTHANDLE hScanAPI,
 IN unsigned long ulTimeoutInMilliseconds,
 OUT BOOL* pbContinue)
{
 SKTRESULT Result;
 TSktScanObject* pSktObject=NULL;
 Result=SktScanWait(hScanAPI,&pSktObject,ulTimeoutInMilliseconds);
 if(SKTSUCCESS(Result))
 {
 if(Result!=ESKT_WAITTIMEOUT)
 {
 if(pSktObject)
 {
 switch(pSktObject->Msg.MsgID)
 {
 case kSktScanMsgIdDeviceArrival:
 Result=HandleDeviceArrival(pSktObject);
 break;
 case kSktScanMsgIdDeviceRemoval:
 Result=HandleDeviceRemoval(pSktObject);
 break;
 case kSktScanMsgIdTerminate:
 // we are done with ScanAPI, somebody
 // cal led SktSet with Abort MsgId
 if(pbContinue)
 *pbContinue=FALSE;// quit the for
 TraceInfo(_T("Receive a Terminate Msg, \

then shutdown the App receiving \ thread"));
 break;
 case kSktScanMsgSetComplete:
 case kSktScanMsgGetComplete:
 Result=

HandleGetOrSetComplete(pSktObject);
 break;
 case kSktScanMsgEvent:
 Result=

HandleAsynchronousEvent(pSktObject);
 break;
 default:
 {
 TraceInfo(_T("unknown Message ID \
 received:0x%x"),

pSktObject->Msg.MsgID);
 }
 break;
 }
 // release the ScanObj we received in the wait
 SktScanRelease(hScanAPI,pSktObject);
 }
 }
 }
 return Result;
}

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 19/184

// called from the ScanAPI consumer logic
// that is using SktScanWait API
void CMyAppDlg::HandleGetOrSetComplete(
 IN TSktScanObject* pScanObj
)
{
 switch(pScanObj->Property.ID)
 {
 case kSktScanPropIdTrigger:
 // ungray out the trigger btn
 m_TriggerBtn.Enable(TRUE);
 if(!SKTSUCCESS(pScanObj->Msg.Result))
 {
 DisplayError(_T("Failed to trigger: %d"),
 pScanObj->Msg.Result);
 }
 break;
 }
}

C# source code:

 public partial class Form1 : Form
 {
 private ISktScanApi _scanApi;
 private ISktScanDevice _device;
 public Form1()
 {
 InitializeComponent();
 InitializeScanAPI();
 }

 private void buttonTrigger_Click(object sender, EventArgs e)
 {
 // create a ScanObject instance
 ISktScanObject scanObj =
 SktClassFactory.createScanObject();

 // Initialize a ScanObject to
 // Trigger the device
 scanObj.Property.ID =
 ISktScanProperty.propId.kSktScanPropIdTriggerDevice;

 scanObj.Property.Type =
 ISktScanProperty .types.kSktScanPropTypeByte;

 scanObj.Property.Byte =
 ISktScanProperty.values.trigger.kSktScanTriggerStart;

 // set the property with the device
 // reference
 long result = _device.SetProperty(scanObj);

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 20/184

 if (SktScanErrors.SKTSUCCESS(result))
 {
 buttonTrigger.Enabled = false;
 }
 else
 {
 // display an error message
 DisplayError("Unable to trigger: " + result);
 }
 }

 // timer to checking and consuming ScanObject from ScanAPI
 private void timerScanAPIConsumer_Tick(object sender,

EventArgs e
 {
 ISktScanObject scanObj=null;

 // w ait for ScanAPI ScanObject
 long result = _scanApi.WaitForScanObject(out scanObj, 10);

 if (SktScanErrors.SKTSUCCESS(result))
 {
 if (result != SktScanErrors.ESKT_WAITTIMEOUT)
 {
 int propId = scanObj.Msg.ID;
 switch (propId)
 {
 case ISktScanMsg.kSktScanMsgIdDeviceArrival:
 result = HandleDeviceArrival(scanObj);
 break;
 case ISktScanMsg.kSktScanMsgIdDeviceRemoval:
 result = HandleDeviceRemoval(scanObj);
 break;
 case ISktScanMsg.kSktScanMsgIdTerminate:
 // we are done with ScanAPI, somebody
 // called Set with kSktScanPropIdAbort

 // as Property ID
 result = HandleTerminate(scanObj);
 break;
 case ISktScanMsg.kSktScanMsgGetComplete:
 case ISktScanMsg.kSktScanMsgSetComplete:
 result = HandleGetOrSetComplete(scanObj);
 break;
 case ISktScanMsg.kSktScanMsgEvent:
 result = HandleEvent(scanObj);
 break;
 }
 // release the ScanObject we received in the wait
 _scanApi.ReleaseScanObject(scanObj);
 }
 }
 }

 private long HandleGetOrSetComplete(ISktScanObject scanObj)
 {

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 21/184

 long result = SktScanErrors.ESKT_NOERROR;
 ISktScanProperty property = scanObj.Property;
 switch (property.ID)
 {

case ISktScanProperty.propId.kSktScanPropIdTriggerDevice:
 // ungrey out the trigger button
 buttonTrigger.Enabled = true;
 result = scanObj.Msg.Result;
 if (!SktScanErrors.SKTSUCCESS(result))
 {
 DisplayError("Failed to trigger: " + result);
 }
 break;
 }
 return result;
 }

Java source code:

// handler for the Trigger button
class TriggerButtonHandler implements Runnable {
 private ISktScanDevice _device=null ;
 private ButtonField _button;

 // constructor
 public TriggerButtonHandler(
 ISktScanDevice device,
 ButtonField button)
 {
 _device=device;
 _button=button;
 }

 public void run() {

 // create a ScanObject instance
 ISktScanObject scanObj=
 SktClassFactory.createScanObject();

 // Initialize a ScanObject to
 // Trigger the device
 ISktScanProperty property=
 scanObj.getProperty();

 property.setID(
 ISktScanProperty.propId.
 kSktScanPropIdTriggerDevice);

 property.setType(
 ISktScanProperty.types.
 kSktScanPropTypeByte);

 property.setByte(
 ISktScanProperty.values.trigger.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 22/184

 kSktScanTriggerStart);

 // set the property with the device
 // reference
 long result=_device.SetProperty(scanObj);

 // check the set result
 if (SktScanErrors.SKTSUCCESS(result)){
 _button.setVisualState(VISUAL_STATE_DISABLED);
 }
 else
 {
 // display an error message
 DisplayError("Unable to trigger: "+result);
 }
 }

}

class ScanAPIConsumer extends TimerTask {

 private ISktScanApi _scanApi;
 private AppRef _appRef;
 public ScanAPIConsumer(ISktScanApi scanApi,AppRef appRef)
 {
 _scanApi=scanApi;
 _appRef=appRef;
 }

 public void run() {
 ISktScanObject[]scanObj=new ISktScanObject[1];

 // wait for scanAPI ScanObject
 long result=_scanApi.WaitForScanObject(scanObj,10);

 if (SktScanErrors.SKTSUCCESS(result))
 {
 if (result!=SktScanErrors.ESKT_WAITTIMEOUT)
 {
 int propId=
 scanObj[0].getMessage().getID();

 switch (propId){
 case ISktScanMsg.kSktScanMsgIdDeviceArrival:

 result=
 HandleDeviceArrival(scanObj[0]);
 break ;

 case ISktScanMsg.kSktScanMsgIdDeviceRemoval:
 result=
 HandleDeviceRemoval(scanObj[0]);
 break ;

 case ISktScanMsg.kSktScanMsgIdTerminate:
 // we are done with ScanAPI, somebody
 // called Set with Abort as MsgID
 result=
 HandleTerminate(scanObj[0]);
 break ;

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 23/184

 case ISktScanMsg.kSktScanMsgSetComplete:
 case ISktScanMsg.kSktScanMsgGetComplete:
 result=
 HandleGetOrSetComplete(scanObj[0]);
 break ;

 case ISktScanMsg.kSktScanMsgEvent:
 break ;
 }
 // release the ScanObj we received in the wait
 _scanApi.ReleaseScanObject(scanObj[0]);
 }
 }
 }

 // called from the ScanAPI consumer logic
 // that is using the wait API
 private long HandleGetOrSetComplete(ISktScanObject scanObj) {
 long result=SktScanErrors.ESKT_NOERROR;
 ISktScanProperty property=scanObj.getProperty();
 switch (property.getID()){
 case ISktScanProperty.propId.
 kSktScanPropIdTriggerDevice:

 // ungray out the trigger btn
 _appRef.getTriggerBtn().
 setVisualState(VISUAL_STATE_NORMAL);

 result=scanObj.getMessage().getResult();

 if (!SktScanErrors.SKTSUCCESS(result)){
 DisplayError("Failed to trigger: "+result);
 }
 break ;
 }
 return result;
 }

};

Objective C source code:

-(IBAction)btnClicked:(id)sender{
 id<ISktScanObject> scanObj=[SktClassFactory createScanObject];
 [[scanObj Property] setID:kSktScanPropIdTriggerDevice];
 [[scanObj Property]setType:kSktScanPropTypeByte];
 [[scanObj Property]setByte:kSktScanTriggerStart];
 [_rootViewController AddPropertyToSet:scanObj];
 [_rootViewController SendFirstPropertyToSet];
}

// timer handler for consuming ScanObject from ScanAPI
// if ScanAPI is not initialized this handler does nothing
-(void)onTimer{
 if (_scanApiInitialized==true){
 SKTRESULT result=[_scanapi WaitForScanObject:_scanObjectReceived TimeOut:0];
 if (SKTSUCCESS(result)) {
 if (result!=ESKT_WAITTIMEOUT) {
 [self HandleScanObject:_scanObjectReceived];

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 24/184

 [_scanapi ReleaseScanObject:_scanObjectReceived];
 }
 }
 }

}

-(void) HandleScanObject:(id<ISktScanObject>)scanobject{

switch ([[scanobject Msg] MsgID]) {
case kSktScanMsgIdDeviceArrival:
[self HandleDeviceArrival:scanobject];
break;
case kSktScanMsgIdDeviceRemoval:
[self HandleDeviceRemoval:scanobject];
break;
case kSktScanMsgGetComplete:
[self DoGetComplete:scanobject];
break;
case kSktScanMsgSetComplete:
[self DoSetComplete:scanobject];
break;
case kSktScanMsgIdTerminate:
[_scanapi Close];
break;
case kSktScanMsgEvent:
[self HandleEvent:scanobject];
break;
default:
break;

}
}

-(void) DoGetComplete:(id<ISktScanObject>)scanObject{

SKTRESULT result=ESKT_NOERROR;
if (scanObject!=nil) {

 result=[[scanObject Msg]Result];

id<ISktScanProperty> property=[scanObject Property];
int ID=[property getID];
switch (ID) {

case kSktScanPropIdFriendlyNameDevice:
result=[self OnFriendlyName:scanObject];
break;
case kSktScanPropIdBluetoothAddressDevice:
result=[self OnBtAddress:scanObject];
break;
case kSktScanPropIdDeviceType:
result=[self OnScannerType:scanObject];
break;
case kSktScanPropIdVersionDevice:
result=[self OnScannerFirmware:scanObject];
break;
case kSktScanPropIdBatteryLevelDevice:
result=[self OnBatteryLevel:scanObject];
break;
case kSktScanPropIdLocalDecodeActionDevice:
result=[self OnDecodeAction:scanObject];
break;

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 25/184

case kSktScanPropIdCapabilitiesDevice:
result=[self OnCapabilitiesDevice:scanObject];
break;
case kSktScanPropIdPostambleDevice:
result=[self OnPostambleDevice:scanObject];
break;
case kSktScanPropIdSymbologyDevice:
result=[self OnSymbologyInfo:scanObject];
break;
default:
break;

}

 // send a notification to update the progress bar

[[NSNotificationCenter defaultCenter] postNotificationName:@"msg_name" object:nil
userInfo:nil];

 // and send the next property if there is one
 [self SendFirstPropertyFromList];

}
}

-(void) DoSetComplete:(id<ISktScanObject>)scanObject{

SKTRESULT result=ESKT_NOERROR;
if (scanObject!=nil) {

result=[[scanObject Msg]Result];
 // send a notification to update the progress bar

[[NSNotificationCenter defaultCenter] postNotificationName:@"msg_name" object:nil
userInfo:nil];

_propertySetPending=NO;
 // and send the next property if there is one
 [self SendFirstPropertyToSet];

}
}

4.8 Handling asynchronous events or completion events

The ScanAPI object maintains a queue to receive asynchronous events and property
operation complete events waitting for the application to consume them.

An application can retrieve these events by using the wait API.
This API returns a ScanObject that will need to get released once the application is
done with it by calling the release API.

The wait API returns immediately if there is an event in the queue, or it will wait the
specified input parameter time if the queue is empty.

Completion events or asynchronous events can arrive at any time and in any order.

The recommended way for handling these events is to create a switch statement on
the message ID received in the ScanObject.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 26/184

There are only 6 possible message types: kSktScanMsgIdDeviceArrival,
kSktScanMsgIdDeviceRemoval, kSktScanMsgIdTerminate,
kSktScanMsgSetComplete, kSktScanMsgGetComplete and kSktScanMsgEvent.

For each of these message types a handler function can be called. Inside the handler
function, the Result member of the Message received should be checked to be sure
the process can continue.

The handler functions for the Set Property Complete or Get Property Complete
event can also have a switch statement on the property ID. If the application used
the context member of a property, the same context is then returned in the complete
property.

The decoded data or the CHS buttonȭs press status is received in the handler
functions for the messages that have kSktScanMsgEvent as message ID.

4.9 Termination

When ScanAPI is no longer needed it can be terminated by setting an Abort property
to the ScanAPI object.

At that point, if there are any devices open, ScanAPI sends a Removal event for each
of the Device objects open, upon which the Device object should be closed by the
application using the close API.

Once all the Device objects have been closed, ScanAPI sends a Terminate event and
at that point it is safe to close ScanAPI.

5 ScanAPI Helper (available for Java , C# and Objective C)
ScanAPI Helper has been created to facilitate the integration of ScanAPI into an
application.

It is released as source code and therefore can be highly customizable for the need
of your application. Some basic and common features are provided as sample on
how to use ScanAPI.

NOTE: ScanAPI Helper is available for Java, C# and Objective C base code.

ScanAPI Helper maintains a list of commands to send to ScanAPI. Since properties
cannot be sent before the completion of the previous one, it offers an easy way to
queue the commands and provides a callback for each command completion.
! ÃÏÍÍÁÎÄ ÉÎ ÔÈÉÓ ÃÏÎÔÅØÔ ÉÓ ÅÉÔÈÅÒ Á Ȱ3ÅÔ 0ÒÏÐÅÒÔÙȱ ÏÒ Á Ȱ'ÅÔ 0ÒÏÐÅÒÔÙȱȢ

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 27/184

By example, if an application wants to retrieve the friendly name and the version of
ÔÈÅ ÃÏÎÎÅÃÔÅÄ ÄÅÖÉÃÅȟ ÉÔ ÕÓÅÓ 3ÃÁÎ!0)(ÅÌÐÅÒ ÔÏ ÄÏ Á Ȱ0ÏÓÔ'ÅÔ&ÒÉÅÎÄÌÙ.ÁÍÅȱ ÁÎÄ Á
Ȱ0ÏÓÔ'ÅÔ$ÅÖÉÃÅ6ÅÒÓÉÏÎȱ ÉÎ Á ÒÏ×ȟ ÁÎÄ ÆÏÒ ÅÁÃÈ ÏÆ ÔÈÅÓÅ ÆÕÎÃÔÉÏÎÓȟ Á ÃÁÌÌÂÁÃË ÉÓ
passed, so when the Get Friendly Name completes, the callback is called and the
application can refresh the UI with the new friendly name, and it follows the same
logic when Get Device Version completes.

It retries sending the command up to 3 times if the command completion failed in
time out error.

The Java version of ScanAPI Helper creates a timer task to consume asynchronous
ScanObject coming from ScanAPI.

The C# and Objective C version of ScanAPI Helper does not create a timer, but
instead provides a method, DoScanAPIReceive, that has to be called from a timer
function or a thread.

The following paragraphs describe the steps required for using ScanAPI Helper.

5.1 Handling the ScanAPI Helper notifications

Since most of the ScanAPI operations are asynchronous, it is very important to setup
a way for handling notifications. ScanAPI Helper provides a
ScanAPIHelperNotification interface or a ScanApiHelperDelegate protocol for
Objective C environment that must be implemented in order to handle the various
notifications correctly.
Here is how Scanner Settings for Android is using this interface:

 private ScanApiHelperNotification _scanApiHelperNotification=new ScanApiHelperNotification() {
 /**
 * receive a notification indicating ScanAPI has terminated,
 * then send an intent to finish the activity if it is still
 * running
 */
 public void onScanApiTerminated() {
 _consumerTerminatedEvent.set();
 if (_forceCloseUI){
 Intent intent=new Intent(NOTIFY_CLOSE_ACTIVITY);
 sendBroadcast(intent);
 }
 }
 /**
 * ScanAPI is now initialized, if there is an error
 * then ask the activity to display it
 */
 public void onScanApiInitializeComplete(long result) {
 // if ScanAPI couldn't be initialized
 // then display an error
 if (!SktScanErrors.SKTSUCCESS(result)){
 _scanApiOwnership.releaseOwnership();
 String text=getString(R.string.failed_to_initialize_scanapi_error_)+result;
 Intent intent=new Intent(NOTIFY_ERROR_MESSAGE);
 intent.putExtra(EXTRA_ERROR_MESSAGE,text);
 }

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 28/184

 }
 /**
 * ask the activity to display any asynchronous error
 * received from ScanAPI
 */
 public void onError(long result) {
 String text=getString(R.string.scanapi_is_reporting_an_error_)+result;
 Intent intent=new Intent(NOTIFY_ERROR_MESSAGE);
 intent.putExtra(EXTRA_ERROR_MESSAGE,text);
 }

 /**
 * a device has disconnected. Update the UI accordingly
 */
 public void onDeviceRemoval(DeviceInfo deviceRemoved) {
 _currentSelectedDevice=null ;
 Intent intent=new Intent(NOTIFY_SCANNER_REMOVAL);
 intent.putExtra(EXTRA_DEVICENAME,deviceRemoved.getName());
 sendBroadcast(intent);
 }

 /**
 * a device is connecting, update the UI accordingly
 */
 public void onDeviceArrival(long result, DeviceInfo newDevice) {
 Intent intent=null ;
 if (SktScanErrors.SKTSUCCESS(result)){
 _currentSelectedDevice=newDevice;
 intent=new Intent(NOTIFY_SCANNER_ARRIVAL);
 intent.putExtra(EXTRA_DEVICENAME,newDevice.getName());
 }
 else
 {
 String text=getString(R.string.error_)+result+
 getString(R.string._during_device_arrival_notification);
 intent=new Intent(NOTIFY_ERROR_MESSAGE);
 intent.putExtra(EXTRA_ERROR_MESSAGE,text);
 }
 sendBroadcast(intent);
 }
 /**
 * ScanAPI is delivering some decoded data
 * ask the activity to display them
 */
 public void onDecodedData(DeviceInfo deviceInfo,
 ISktScanDecodedData decodedData) {
 Intent intent=new Intent(NOTIFY_DATA_ARRIVAL);
 intent.putExtra(EXTRA_SYMBOLOGY_NAME,decodedData.getSymbologyName());
 intent.putExtra(EXTRA_DECODEDDATA,decodedData.getData());
 sendBroadcast(intent);
 }
 /**
 * an error occurs during the retrieval of ScanObject
 * from ScanAPI, this is critical error and only a restart
 * can fix this.
 */
 public void onErrorRetrievingScanObject(long result) {
 Intent intent =new Intent(NOTIFY_ERROR_MESSAGE);
 String text="Error unable to retrieve ScanAPI message: ";
 text+="("+result+")" ;
 text+="Please close this application and restart it";
 intent .putExtra(EXTRA_ERROR_MESSAGE,text);
 sendBroadcast(intent);
 }
 };

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 29/184

The same notification handler but this time from C# version of Scanner Settings:

// ScanAPI Helper provides a series of Callbacks

 // indicating some asynchronous events have occured

 #region ScanApiH elperNotification Members

 // a scanner has connected to the host

 public void OnDeviceArrival(long result, ScanApiHelper. DeviceInfo newDevice)

 {

 DoScannerArrival(result,newDevice);

 }

 // a scanner has dis connected from the host

 public void OnDeviceRemoval(ScanApiHelper. DeviceInfo deviceRemoved)

 {

 DoScannerRemoval(deviceRemoved);

 if (DeviceRemovalNotification != null)

 DeviceRemovalNotification(deviceR emoved);

 // close the progress bar

 if (UpdateProgressBarEvent != null)

 UpdateProgressBarEvent(true);

 }

 // a ScanAPI error occurs.

 public void OnError(long result, string errMsg)

 {

 MessageBox .Show("ScanAPI Error: " +Convert .ToString(result) + " ["

+ (errMsg != null ? errMsg : "") + "]" ,

 "Scanner Settings" , MessageBoxButtons .OK, MessageBoxIcon .Warning);

 }

 // some decoded data have been receiv ed

 public void OnDecodedData(ScanApiHelper. DeviceInfo device,

ISktScanDecodedData decodedData)

 {

 // if somebody (the ScanForm) has registered

 // to receive this event then fire the event now

 if (DecodedD ataEvent != null)

 DecodedDataEvent(device, decodedData);

 }

 // ScanAPI is now initialized and fully functionnal

 // (ScanAPI has some internal testing that might take

 // few seconds to complete)

 public void OnScanApiInitializeComplete(long result)

 {

 if (SktScanErrors .SKTSUCCESS(result))

 {

 _bInitialized= true ;

 }

 else

 {

 MessageBox .Show("SktScanOpen failed!" ,

 "Scanner Settings" , MessageBoxButtons .OK, MessageBoxIcon .Warning);

 }

 }

 // ScanAPI has now terminate, it is safe to

 // close the application now

 public void OnScanApiTerminated()

 {

 timerScanner.Stop();

 _bInitialized = false ;

 Close(); // we can now close this form

 }

 // the ScanAPI Helper encounters an error during

 // the retrieval of a ScanObject

 public void OnErrorRet rievingScanObject(long result)

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 30/184

 {

 MessageBox .Show("Unable to retrieve a ScanAPI ScanObject: " +

 Convert .ToString(result),

 "Scanner Settings" , MessageBoxButtons .OK, MessageBoxIcon .Warning);

 }

 #endregion

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 31/184

The same notification handler but this time from Objective C version of Scanner
Settings:

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 32/184

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 33/184

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 34/184

5.2 Set ScanAPI Helper notification

ScanAPI Helper must be instructed to use your notification handler object and this
can be accomplished by calling the setNotification method (or setDelegate in
Objective C) with the reference to the notification interface implementation.
 _scanApiHelper.setNotification(_scanApiHelperNotification);

This is important to use this function prior calling the open function to be sure to
trap all the notifications.

5.3 Open ScanAPI Helper

Once the ScanAPI Helper object has been instantiate by using the new function, it
can then be open using the open() method. The open() method doesnȭÔ ÒÅÔÕÒÎ
anything but instead the onScanApiInitializeComplete notification will be called
once the ScanAPI initialization process has been completed. A result code indicates
how successful the initialization was.
Example:
 _scanApiHelper.open();

5.4 Close ScanAPI Helper

Once the application is done with ScanAPI, it can close it by calling the close method
of the ScanAPIHelper object as shown below:
 _scanApiHelper.close();

4ÈÅ ÃÌÏÓÅ ÍÅÔÈÏÄ ÄÏÅÓÎȭÔ ÒÅÔÕÒÎ ÁÎÙ ÖÁÌÕÅȟ ÂÕÔ ÔÈÅ ÎÏÔÉÆÉÃÁÔÉÏÎ
onScanApiTerminated will be called when ScanAPI has effectively shutdown.

5.5 Scanner arrival

When a scanner connects to the host, ScanAPI Helper notifies the application using
the onDeviceArrival notification and specifies a result code, and in case of success it
also specifies the device information (friendly name, device type). ScanAPI Helper
keeps the device information object into its devices list. The application can retrieve
this list at any time. In our Scanner Settings SDK sample application for Android
platform, this notification asks the activity to refresh with the new scanner
information or in case of an error, it displays an error message as described below:
 /**
 * a device is connecting, update the UI accordingly
 */
 public void onDeviceArrival(long result, DeviceInfo newDevice) {
 Intent intent=null ;
 if (SktScanErrors.SKTSUCCESS(result)){
 _currentSelectedDevice=newDevice;
 intent=new Intent(NOTIFY_SCANNER_ARRIVAL);
 intent.putExtra(EXTRA_DEVICENAME,newDevice.getName());
 }
 else
 {
 String text=getString(R.string.error_)+result+
 getString(R.string._during_device_arrival_notification);
 intent=new Intent(NOTIFY_ERROR_MESSAGE);

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 35/184

 intent.putExtra(EXTRA_ERROR_MESSAGE,text);
 }
 sendBroadcast(intent);
 }

5.6 Decoded data notification

Each time a scanner decodes correctly a barcode, ScanAPI Helper calls the
onDecodedData notification with the device information object and the decoded
data. In the Scanner Settings for Android case the activity that has registered for the
NOTIFY_DATA_ARRIVAL intent will receive and display the decoded data. This
activity is the ScanWindowActivity.
Here is the code extract from Android Scanner Settings for this notification:

 /**
 * ScanAPI is delivering some decoded data
 * as the activity to display them
 */
 public void onDecodedData(DeviceInfo deviceInfo,
 ISktScanDecodedData decodedData) {
 Intent intent=new Intent(NOTIFY_DATA_ARRIVAL);
 intent.putExtra(EXTRA_SYMBOLOGY_NAME,decodedData.getSymbologyName());
 intent.putExtra(EXTRA_DECODEDDATA,decodedData.getData());
 sendBroadcast(intent);
 }

5.7 Scanner removal

When a scanner disconnects from the host, the ScanAPI Helper notifies the
application by calling the notification onDeviceRemoval. Usually the application
updates its UI to reflect that change. The Scanner Settings for Android sends an
Intent to the Activity that has registered for it, as shown in the following lines:
 /**
 * a device has disconnected. Update the UI accordingly
 */
 public void onDeviceRemoval(DeviceInfo deviceRemoved) {
 _currentSelectedDevice=null ;
 Intent intent=new Intent(NOTIFY_SCANNER_REMOVAL);

intent.putExtra(EXTRA_DEVICENAME,deviceRemoved.getName());
 sendBroadcast(intent);

 }

5.8 Is there a connected Scanner

At any point of time, the application can interrogate ScanApi Helper to know if there
is at least one device connected by using the following method:

_scanApiHelper.isDeviceConnected();

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 36/184

This might be useful to know what application menu should be displayed by
example, which could change in function of the connection status.

5.9 Get the list of scanners

The list of connected scanner reference can be retrieved by using the getDevicesList
method.

5.10 No Device Connected item

In some occasion the application might want to display a specific text when no
device is connected. The ScanAPI Helper method setNoDeviceText() allows the
application to specify a text that will be used to display the only item of the devices
list when no scanner is connected.

6 IDE Integration

6.1 C/C++ Version

ScanAPI version prior 10.1 has been compiled only with Visual Studio 2008 for both
targets: Windows Mobile and Windows.

ScanAPI version 10.1 and higher has been compiled with Microsoft Visual Studio
2008 for Windows Mobile and with Microsoft Visual Studio 2013 for Windows.
The SDK Samples folder has 2 solution files for each Visual Studio: samples.sln for
Visual Studio 2013 and samplesWmVs2008.sln for Visual Studio 2008.

The inclusion of ScanAPI in this environment in your C/C++ project can be done in 2
ways; by adding the following lines in your source file directly:
ΠÉÎÃÌÕÄÅ ȰЃ3$+)ÎÓÔÁÌÌ 0ÁÔÈЄ\ include\ 3ÃÁÎ!0)ȢÈȱ
ΠÐÒÁÇÍÁ ÃÏÍÍÅÎÔɉȰÌÉÂȱȟȱЃ3$+)ÎÓÔÁÌÌ 0ÁÔÈЄ\ \ lib\ 3ÃÁÎ!0)ȢÌÉÂȱ
Or by adding only the include line in your source file and by adding the lib file in
your Project Link input settings.

6.2 Java Version

Since version 10.1 of ScanAPI, BlackBerry has been removed from the supported
hosts.
ScanAPI has been compiled using Eclipse Galileo (version 3.5).
ScanAPI is composed of two JAR files located under the lib directory of the SDK Java
portion.

Following are the steps required in order to include ScanAPI into your project and
workspace.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 37/184

6.2.1 Setting up the Eclipse workspace

From Eclipse select the menu Window / Preferences.
Select from the left tree control the path Java\ Build Path\ User Libraries
#ÈÏÏÓÅ ÔÈÅ Ȱ)ÍÐÏÒÔȣȱ ÂÕÔÔÏÎ ÁÎÄ ÂÒÏ×ÓÅ ÔÏ ×ÈÅÒÅ 3ÃÁÎ!0)ͺ3$+ ÉÓ ÉÎÓÔÁÌÌÅÄ ÔÏ
select the ScanAPI_SDK.user libraries file. Check the ScanAPI option and click OK.

6.2.2 Setting up the application project for using ScanAPI

Go to your Java application project properties; select Java Build Path in the tree on
the left panel of your application properties dialog. On the right panel, select the
,ÉÂÒÁÒÉÅÓ ÔÁÂ ÁÎÄ ÃÌÉÃË ÏÎ ÔÈÅ Ȱ!ÄÄ ,ÉÂÒÁÒÙȣȱ ÂÕÔÔÏÎȢ)Î ÔÈÅ !ÄÄ ,ÉÂÒÁÒÙ ÄÉÁÌÏÇ
window select Ȱ5ÓÅÒ ,ÉÂÒÁÒÙȱ ÁÎÄ ÃÌÉÃË ÎÅØÔȢ
In the next screen select ScanAPI library and click the Finish button.

At this point your Java application is ready to use ScanAPI.

6.2.3 Tools provided with ScanAPI SDK

There are 2 tools provides in the SDK and that are launched automatically during
the installation of ScanAPI SDK but they will not be launched if you have installed
ScanAPI SDK using the compressed SDK file.

UpdateWorkspace.jar tool creates a series of Path Variables that are used mostly for
compiling the SDK Sample application.
Since the Path Variables contain a complete path, and not a relative path, this tool
updates these variables with the path of where the ScanAPI SDK installed on the
host machine.
The Path Variables are stored in the Eclispe workspace.
The tool asks the user for the path of the workspace to update with these new Path
Variables.

The SetupScanAPI_SDK.jar. tool modifies the project settings of the sample
application for Android platform and setup the ScanAPI SDK path in the user library
file.

6.3 C# Version

ScanAPI version prior 10.1 has been compiled with Visual Studio 2008 and using the
Compact Framework 2.0 and the .NET framework 3.5.

ScanAPI version 10.1 and higher has been compiled with Visual Studio 2013 for
Windows target and with Visual Studio 2008 for Windows Mobile target using the
Compact Framework 2.0 and the .NET framework 4.0.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 38/184

The C# version uses a wrapper. ScanAPI has been compiled as a native (unmanaged)
DLL. This DLL is ScanAPIDLL.dll for Windows platforms and ScanAPIDLLWM.dll for
Windows Mobile platform. The managed API is assembled in ScanAPIManaged.dll
for Windows platforms and in ScanAPIManagedWM.dll for the Windows Mobile
platforms.

Both sets of DLLs are therefore required on the host device and should be located at
the same place. So for a Windows host, the application using ScanAPI should have in
its directory ScanAPIDLL.dll and ScanAPIManaged.dll. Same for a Windows Mobile
host, the application using ScanAPI should have in its directory ScanAPIDLLWM.dll
and ScanAPIManagedWM.dll.

In order to build your ScanAPI application, add the ScanAPI Managed reference in
the References folder of your application by browsing to where ScanAPI SDK is
installed on your developer machine, and pointing to the right dll. Depending on
where the ScanAPI SDK has been installed, the path may look like this:
C:\ Program Files\ Socket Mobile\ SocketScan 10\ ScanAPI_SDK\ Windows\ lib.

6.4 Objective C Xcode integration

ScanAPI is released in a static library form, a serie of header files and the source files
for ScanApiHelper, DeviceInfo and Debug.

The recommended way to integrate ScanAPI in your Xcode project is to drag and
drop the ScanAPI folder located at the root of the ScanAPI SDK into your Xcode
project.

The application must add the External accessory framework,
AVFoundation.framework, AudioToolbox.framework, and in the info plist the
Ȱ3ÕÐÐÏÒÔÅÄ %ØÔÅÒÎÁÌ !ÃÃÅÓÓÏÒÙ 0ÒÏÔÏÃÏÌȱ ÓÈÏÕÌÄ ÃÏÎÔÁÉÎÓ ÔÈÅ ÓÔÒÉÎÇ
ȰÃÏÍȢÓÏÃËÅÔÍÏÂÉÌÅȢÃÈÓȱȢ

Most of the time, ScanApiHelper should be integrated into one of the controller of
the iOS application. The header of this controller should contains the following line:
ΠÉÍÐÏÒÔ Ȱ3ÃÁÎ!ÐÉ(ÅÌÐÅÒȢhȱ

The controller must derive from ScanApiHelperDelegate protocol.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 39/184

7 Recommendations

7.1 General

The recommended approach of managing a scanner connection to the host is to
detect if a scanner is connected when needed in the application. It is not
recommended to control the connection and disconnection of the scanner as the
scanner can be disconnected or connected independently of the application state.

If an application has multiple views, but only one view requires a scanner to be
connected, the best approach for this view is to check if a scanner is connected. If a
scanner is not connected, then the application should direct the user on how to
connect the scanner to the host. This can be done by scanning a barcode, or simply
by turning on a scanner that is already paired to the host. The scanner can be left
connected through the life cycle of the application knowing that the power
consumption for both, the host and the scanner, is minimal in that operational
mode.

)Æ ÔÈÅ ÓÃÁÎÎÅÒ ÄÏÅÓÎȭÔ ÈÁÖÅ ÁÎÙ ÁÃÔÉÖÉÔÙȟ ÉÔ ×ÉÌÌ ÓÈÕÔ ÉÔÓÅÌÆ ÄÏ×Î ÁÆÔÅÒ Á ς ÈÏÕÒÓ
timeout. If for some reason, the host and the scanner are out of range, the scanner
will automatically try to reconnect to the host during a period of 45 seconds for a
CHS 7Xi/7Qi series or up to 30 connection attempts for a CHS 7Ci/Mi/Pi/8Ci /8Qi
series.

At any time the user can turn off or on the scanner. Upon turning the scanner back
one, it will reconnect automatically to the last paired host device.

7.2 Android

It is not recommended to attach ScanAPI or ScanApiHelper to the Activity class, as
this object will get destroy and re-created upon screen rotation causing a connection
drop of the eventual connected scanner. The scanner will automatically reconnect to
ÔÈÅ ÈÏÓÔ ÉÎ ÔÈÉÓ ÃÁÓÅȟ ÂÕÔ ÔÈÅ ÕÓÅÒ ÅØÐÅÒÉÅÎÃÅ ×ÏÎȭÔ ÂÅ ÉÄÅÁÌȢ

We recommend attaching ScanAPI or ScanApiHelper to the application class as
shown in our sample application ScannerSettings for the optimal user experience.

It is important to note that your application must request the permission to use
Bluetooth and to write in the external storage. This last permission is required
because the ScanAPI settings are stored into a file on the external storage.
These permissions are identified respectively as follow:
android.permission.BLUETOOTH,
android.permission.BLUETOOTH_ADMIN and
android.permission.WRITE_EXTERNAL_STORAGE.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 40/184

)Æ ÔÈÅÓÅ ÐÅÒÍÉÓÓÉÏÎÓ ÁÒÅÎȭÔ ÒÅÑÕÅÓÔÅÄȟ ÔÈÅ ÅØÔÅÒÎÁÌ ÓÔÏÒÁÇÅ ×ÉÌÌ ÍÁËÅ 3canAPI
returning error ESKT_TESTFAILED (-1), and the Bluetooth one will make ScanAPI
returning error ESKT_UNABLEOPENDEVICE (-27) and then
ESKT_NOTHINGTOLISTEN (-47).

7.3 iOS

On an iOS device, the scanner will always stay connected to the host. If the
application goes to the background, the application is paused. The External
Accessory framework will then simulate a device disconnection to the application,
but the Bluetooth link remains active. When the application is brought back to the
foreground, the External Accessory framework simulates a device connection. Only
certain application types are authorized to run while in background. For these types
of applications, the connection to the scanner will stay alive and running. The
application types are multi-media (music applications playing music while moved to
the background), VOIP applications and location based applications. This restriction
is dictated by iOS and is out of the control of ScanAPI.

8 Device Connection and Disconnection process
With current versions of CHS Scanners, in order to have the best user experience
possible, the CHS is always the initiator of the connection process. That is, the CHS
will always be the device to start the connection process, after an initial setup
connection has been made.

8.1 Initial Connection

The process of the initial connection starts by having the CHS scan a connect
barcode. Once the Bluetooth pairing process is completed, the ScanAPI object
generates a Device Arrival notification that contains the device information.

If the scanner is a 2D Imager scanner, 7X/7Qi series, the connect barcode can be
scanned directly from the device screen. This can be accomplished through the use
of Socket EZ Pair which is a separate application released with the SDK.

If the scanner is a 1D laser scanner, 7Mi/Pi , the connect barcode must be printed out
on paper. Socket EZ Pair can configure the scanner to have it connect back to the
host without the need to scan a connect barcode. In this case, the 1D scanner must
be paired with the host first using the Bluetooth functionality present on the host.

The connect barcode contains the Bluetooth Device Address of the host. It must be a
Data Matrix 2D barcode for the 2D Imager scanner 7Xi/Qi series, and it ,must be a
Code 128 1D barcode for the 1D 7/8 series. Refer to the scanner documentation for
more information about the connect barcode.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 41/184

Some hosts require having their Bluetooth mode set to discoverable in order to
accept the first initial connection.

If the host is an iOS device, the connect ÂÁÒÃÏÄÅ ÄÏÅÓÎȭÔ ÃÏÎÔÁÉÎ ÔÈÅ ÈÏÓÔ "ÌÕÅÔÏÏÔÈ
address, as iOS does not provide an API to retrieve the Bluetooth address, but
ÉÎÓÔÅÁÄ ÃÏÎÔÁÉÎÓ Á ÃÏÍÍÁÎÄ ÔÏ Ó×ÉÔÃÈ ÔÈÅ #(3 ÉÎÔÏ ȬÉ/3 ÍÏÄÅȭȢ 4ÈÅ ÉÎÉÔÉÁÌ
connection can be then started from the iOS Bluetooth manager by tapping on the
desired CHS listed in the Bluetooth discovered devices list. This will initiate the
pairing process and the CHS will connect back to the iOS device as soon as it is
powered on and do this until its connection information is cleared.

8.2 Subsequent Connection

Once the initial connection is made between the scanner and the host, the scanner
×ÉÌÌ ÁÕÔÏÍÁÔÉÃÁÌÌÙ ÒÅÃÏÎÎÅÃÔ ÔÏ ÔÈÅ ÈÏÓÔ ÅÁÃÈ ÔÉÍÅ ÉÔ ÐÏ×ÅÒÓ ÏÎȢ)Æ ÔÈÅ ÈÏÓÔ ÄÏÅÓÎȭÔ
have a ScanAPI application running at the time the scanner connects, the scanner
will try a certain number of times before aborting the connection process.

ScanAPI sends a device arrival notification to the application each time a scanner
connects to the host.

8.3 Reconnection

If the connection between the scanner and host is lost for any reason, such as the
scanner moving out of range of the host, the host suspending or going to sleep, the
scanner will try to reconnect to the host for a period of time (45 seconds for a 7X/Qi
CHS) or a fixed number of times (30 times for a 7Ci/Mi/Pi or 8Ci/Qi) before going to
idle mode.

8.4 Disconnection

The disconnection process usually only happens when the scanner powers off. This
occurs when the user presses the scanner power button to shut it down, or if the
scanner is connected for a long period of time without activity and automatically
powers itself off.

There is also a property (kSktScanPropIdDisconnectDevice) that can be set to the
scanner to make it disconnect.

Each time a scanner disconnects, a device removal notification from ScanAPI is sent
to the application containing the scanner information.

8.5 Roaming

The scanner can connect from one host to another by simply scanning the connect
barcode of another host if available. Note this effectively pairs it to the new host.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 42/184

8.6 Socket EZ Pair feature

This feature is not available for iOS devices. The Scanner reconnects automatically
as soon as the iOS device has successfully paired with the Scanner from its General
Bluetooth settings.

The Socket EZ Pair application configures a scanner to connect back to the host
either by scanning a barcode displayed on the screen or by using a set of properties
sent to the scanner. The latter case is described here.

In order to have ScanAPI connecting to a particular scanner, the ScanAPI
communication port configuration must be changed.
Usually, when a host discovers a scanner, it either assigns a communication port to
this particular scanner (Windows based platforms), or its friendly name is used to
initiate a Bluetooth connection (iOS and Android platforms). If the ScanAPI serial
port configuration is modified to use an outbound port, ScanAPI will then connect to
the remote device that is assigned to this outbound port.

For the scanner to connect back to the host, ScanAPI needs to be re-configured to
use a generic inbound communications port that the scanner will connect back on.

Once ScanAPI has connected to the scanner using either its assigned communication
port or friendly name, the device arrival notification is received by the application.
At that time the application should send the following properties to configure the
scanner to reconnect back to the host:

- Property kSktScanPropIdProfileConfigDevice : to transmit the host Bluetooth
address to the scanner and to specify that the scanner should initiate the
connection in Serial Port Profile (SPP) mode.

- Property kSktScanPropIdDisconnectDevice: to disconnect the scanner and
make the new configuration active. At that point the scanner will try to
reconnect back to the host.

Once the last property has been set, the configuration of ScanAPI must be reverted
back to its original configuration so that it is waiting for an incoming connection.

The ScanAPI property kSktScanPropIdConfiguration Ȱ3ÅÒÉÁÌ0ÏÒÔÓȱ ÉÓ ÕÓÅÄ ÉÎ ÏÒÄÅÒ ÔÏ
read and modify the ScanAPI communication port.

NOTE: It is not recommended to use ScanAPI as the initiator of the connection. It
ÄÏÅÓÎȭÔ ÈÁÖÅ ÒÅÃÏÎÎÅÃÔÉÏÎ ÌÏÇÉÃȟ ÁÎÄ ÉÔ ×ÉÌÌ ÎÅÅÄ ÔÏ ÇÅÔ ÒÅÓÔÁÒÔÅÄ ÅÁÃÈ ÔÉÍÅ Á
connection has to be made.

9 Data Editing

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 43/184

Data Editing is a feature built in ScanAPI to transform the decoded data by defining
a serie of operations that can be triggered by specific criteria. The trigger definition
and the serie of operations are regrouped into a Data Editing Profile.

NOTE: Data Editing is available on ScanAPI version 10.0.10 and higher.

The concept of Data Editing Profile has been introduced for covering the case where
more than one application is using the barcode scanner, and the format of the
decoded data expected by one application is different from the other applications.
Each application can then have its own Data Editing Profile. The ScanAPI SDK
provides an API for the application to select its Data Editing profile configuring the
Data Editing to its needs.

The Data Editing profile trigger defines the critieria to which the decoded data must
comply for applying the Data Editing operations.
These criteria are optional and can be ignored by setting 0 or an empty string in
function of the type of parameter.

The Data Editing operations modify the decoded data.
These operations are defined in 2 categories: string and index. The string category
regroups all the operations that transforms the decoded data and return a new
string as result of the transformation. The index category are utilities operations
looking for a specific characters or string of characters and returning the index of
their locations.

These 2 categories of operations can accept parameters that can be either a constant
value, or the result of an operation.
This allows building complex Data Editing operation by chaining operations
together either as parameter of each other or by concatenation of multiple
operations.

The current profile is the profile that ScanAPI loads upon its initiliation or when the
Set kSktPropIdDataEditingCurrentProfile is invoked with a valid profile name as
parameter.

In the event there is an issue in the current profile that is loaded during ScanAPI
initialization, the initialization will go through with success, but an error event
ESKT_UNABLEINTIALIZEDATAEDITING is sent to the application indicating that the
ÃÕÒÒÅÎÔ $ÁÔÁ %ÄÉÔÉÎÇ ÐÒÏÆÉÌÅ ÆÁÉÌÅÄ ÔÏ ÉÎÉÔÉÁÌÉÚÅ ÃÏÒÒÅÃÔÌÙ ÁÎÄ ÔÈÅÒÅÆÏÒÅ ×ÏÎȭÔ ÂÅ
applied.

9.1 Profile

A Data Editing Profile contains a Trigger section and an Operations section.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 44/184

This gives a way to identify a set of Trigger criteria the decoded data should comply and

a set of Operations to apply to the decoded data if the trigger criteria are met.

There can be only one active profile selected at a time, often called current Profile. The

profile is identified by a name. There canôt be 2 or more profile of the same name.

9.1.1 API

The list of semi colon separated profile names can be retrieved by doing a get with the

property ID set to kSktScanPropIdDataEditingProfile. For adding a new profile, just

add a new name to this list, and a placeholder for the new profile will be created. For

deleting an existing profile, just remove its name from the list.

The property kSktScanPropIdDataEditingCurrentProfile is used to retrieve or set the

current Active Profile.

Refer to the Properties paragraph for more information about these properties.

9.2 Trigger

The trigger contains the list of criteria to which the decoded data must compliant
with in order to apply the Data Editing operations. If at least one condition is not
met then the decoded data is not edited and stays unchanged.

9.2.1 API

The Trigger criteria can be read or modified by using the following set of properties:

kSktScanPropIdDataEditingTriggerSymbologies,

kSktScanPropIdDataEditingTriggerMinLength,

kSktScanPropIdDataEditingTriggerMaxLength,

kSktScanPropIdDataEditingTriggerStartsBy,

kSktScanPropIdDataEditingTriggerEndsWith,

kSktScanPropIdDataEditingTriggerContains.

All these properties require the name of the profile for which the trigger information is

read or modified.

Refer to the Properties paragraph for more information on each of these properties.

9.2.2 Symbology IDs

This trigger contains the list of the symbology IDs that the decoded data should be
coming from.

By example, ÉÆ ÔÈÅ ÌÉÓÔ ÃÏÎÔÁÉÎÓ ÔÈÅ)$Ó Ȱ#ÏÄÅρςψȱ ÁÎÄ Ȱ#ÏÄÅωσȱȟ ÉÆ Á Ȱ50#ȱ ÂÁÒÃÏÄÅ
is scanned, the decoded data are not edited and stay unmodifiedȢ)Æ Á Ȱ#ÏÄÅρςψȱ
barcode is scanned and if the decoded data matches the other Trigger criteria, then
the Data Editing operations are applied to the decoded data.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 45/184

If no Symbology IDs are specified, then the barcode can be from any Symbology and
can be edited as long as it matches the other Trigger criteria.

9.2.3 Min Length

This criteria requests the decoded data to be at least of the specified minimum size. The

Data Editing will fail to trigger if the decoded data length is smaller than the amount of

characters specified.

If no Min Length is specified or the Min Length value is set to 0, then the barcode can

have any minimum size to trigger the Data Editing.

9.2.4 Max Length

Same principle as Minimum Length, if a maximum length is specified, only the decoded

data with a size less than or equal to the maximum length will trigger the Data Editing.

If no Max Length is specified or the Max Length value is set to 0, then the barcode can

have any maximum size to trigger the Data Editing.

9.2.5 Starts By

This criteria triggers the Data Editing if and only if the decoded data starts with the

decoded data specified in this criterion.

If nothing is specified or the string is empty for this trigger parameter, the decoded data

can start by anything and be edited as long as the other trigger criteria are met.

9.2.6 Ends With

This trigger parameter specifies what is required to be present at the end of the decoded

data characters string to apply the data editing operations.

If nothing is specified for this parameter or the string is empty, the decoded data can be

ending by any characters and be edited as long as the other trigger criteria are met.

9.2.7 Contains

This trigger parameter specifies what characters string must be present in the decoded

data in order to edit them. The characters string can be anywhere in the decoded data; at

the beginning, the ending and at the middle.

If nothing is specified or the string is empty the decoded data can contains anything and

be edited as long as the other trigger criteria are met.

9.3 Operations

The operations are defined in a single string of characters. The string should always start

by the start operation delimiter character ó{ó followed by the end operation delimiter

character ó}ô. An operation should always be delimited by the start operation delimiter

character and by the end operation delimiter.

Example: ñ{}{DecodedData()}ò

This example returns the decoded data.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 46/184

Any characters that are outside the operation delimiters would be concatened to the

output string.

Example: ñ{}Prefix{DecodedData()}Suffixò gives the output: ñPrefix123456Suffixò if a

barcode containing 123456 is scanned.

There could be multiple operations after the others.

Example:ò{}Prefix{DecodedData()}-ABC-{DecodedData()}Suffixò produces this result:

òPrefix123456-ABC-123456Suffixò if the barcode scanned contains ó123456ô.

Some operations have parameters. These parameters can be a constant value or the result

of another operation as long as the type corresponds to what the parameter type is

otherwise an error is generated.

Example: ñ{}{TruncateFromBegining({DecodedData()},3)}ò results to ñ456ò if the

barcode scanned is ñ123456ò.

9.3.1 API

The property kSktScanPropIdDataEditingOperation retrieves or modifies the Data

Editing operations of a particular profile. The name of the profile is passed as parameter

of this property.

Refer to the Properties paragraph for more information about this property.

9.3.2 DecodedData

Prototype: String DecodedData()

This operation returns the decoded data as it is received from the barcode scanner.

9.3.3 Truncate from Beginning

Prototype: String TruncateFromBeginning(String input,int nbChars)

This operation removes a number of characters from the beginning of the decoded data.

If nbChars is set to 0 the entire input characters string is retruned.

If nbChars is equal or greater than the actual length of the input string then an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the

decoded data stays un-modified. This error is not reported to the application.

9.3.4 Truncate from End

Prototype: String TruncateFromEnd(String input, int nbChars)

This operation removes a number of characters from the end of the decoded data.

If nbChars is set to 0 the entire input characters string is returned un-modified.

If nbChars is equal or greater than the actual length of the input string, then an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the

decoded data stays un-modified. This error is not reported to the application.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 47/184

9.3.5 Replace

Prototype: String Replace(String input,String search,String replace)

This operation returns a string resulting of the replacement a string of characters by

another one. Only the first occurrence is replaced.

The input string is returned if the string of characters is not found.

9.3.6 Substitute

Prototype: String Substitute(String input,String strCharToReplace,String strNewValue)

This operation replaces each occurrence of a character that is present in the

strCharToReplace by the specified strNewValue.

If only one character needs to be replaced by the new value then the strCharToReplace

contains only this specific character.

Example: ñ{}{Substitute(12345678,36,-)}ò returns ñ12-45-78ò.

The input string is returned un-modified if no character has been replaced.

9.3.7 Escape Character

Prototype: String EscapeCharacter(String escapeCharacterInHexa)

This operation returns a string that corresponds to the Escape character.

For example: the CR character, which is 0x0d, can be injected into the string by calling

this operation: ñ{ EscapeCharacter(0x0d)}ò.

9.3.8 InsertAfterIndex

Prototype: String InsertAfterIndex(String input,int index,String insert)

This operation inserts a string of characters after the specified index. This operation

returns the resulting string of characters. If the index value is set to -1, then this operation

inserts after the last character of the decoded data. If the index is set to -2 then this

operation doesn't insert anything and the string returned is the string in input.

If the index is bigger than the actual input string length an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the

decoded data stays un-modified. This error is not reported to the application.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 48/184

9.3.9 InsertBeforeIndex

Prototype: String InsertBeforeIndex(String input,int index,String insert)

This operation inserts a string of characters before the specified index. If the index value

is set to -1, then this operation inserts before the last character of the decoded data.

If the index is set to -2, the string returned is the string in input.

If the index is bigger than the actual input string length an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the

decoded data stays un-modified. This error is not reported to the application.

9.3.10 FindFirstFromIndex

Prototype: int FindFirstFromIndex(String input,int start,String search,int offset)

This operation returns the index plus the offset of the first occurrence of a string of

characters starting the search from the specified index. If the string is not found, the index

returned is -2.

If the start index is -1 it searches from the beginning, which is the same as if the index is

set to 0. If the specified index is -2 this function returns -2 as well to indicate a string not

found.

If the start index is bigger than the actual input string length an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the

decoded data stays un-modified. This error is not reported to the application.

9.3.11 FindLastFromIndex

Prototype: int FindLastFromIndex(String input,int end,String search,int offset)

This operation returns the index plus the offset of the last occurrence of string of

characters starting from the specified index.

If the string is not found the index returned is -2.

If the index specified is -1 the search starts from the beginning of the string, exactly like

if the index value was set to 0. If the specified index is -2, this operation returns -2

whether or not the string is found in the input string.

If the index specified is bigger than the actual input string length an error

ESKT_INVALIDOPERATION is generated during the Data Editing process and the

decoded data stays un-modified. This error is not reported to the application.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 49/184

9.3.12 MakeUpperCase

Prototype: String MakeUpperCase(String input)

This operation returns the input string with all the characters converted to upper case.

9.3.13 MakeLowerCase

Prototype: String MakeLowerCase(String input)

This operation returns the input string with all the character converted to lower case.

9.3.14 ReplaceNonPrintableCharacters

Prototype: String RemoveNonPrintableCharacters(String input,String replace)

This operation returns the input string without any non-printable ASCII characters by

replacing them with the content of the replace string parameter. The replace string

parameter can be left empty which in this case will simply remove all non-printable

ASCII characters.

9.3.15 DecodedDataWithoutTrailer

Prototype: String DecodedDataWithoutTrailer()

This operation returns the decoded data without the non-printable characters located at

the end of the decoded data.

This is useful if the scanner is programmed with a carriage return suffix, and the Data

Editing is adding a new suffix. The scanner can keep its setting while the data editing

operation is adding a new suffix.

9.3.16 TruncateAfterIndex

Prototype: String TruncateAfterIndex(String input, int index, int offset)

This operation returns the characters before the specified index plus the offset. If the

index is -1 or -2 it returns the entire input string.

If the sum of index and the offset is 0 then an empty characters string is returned.

If the sum of the index and the offset is greater than or equal to the actual input string

length then an error ESKT_INVALIDOPERATION is generated during the Data Editing

process and the decoded data stays un-modified. This error is not reported to the

application.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 50/184

9.3.17 TruncateBeforeIndex

Prototype: String TruncateBeforeIndex(String input, int index, int offset)

This operation returns the characters from the specified index plus the offset up to the end

of the input string. If index is -1 or -2 the entire input string is returned.

If the sum of the index and offset is 0 then an empty characters string is returned.

If the sum of the index and offset is bigger or equal to the actual input string length then

an error ESKT_INVALIDOPERATION is generated during the Data Editing process and

the decoded data stays un-modified. This error is not reported to the application.

9.3.18 Substring

Prototype: String Substring(String input, int startIndex,int stopIndex)

This operation returns the string that is between the start index and the stop index of the

input string.

If startIndex is -1 or -2 then 0 replaces it.

If the stopIndex is -1 or -2 then it's replaced by the index of the last character in the input

string.

If the startIndex is bigger or equal to the actual input characters string length then is set to

be equal to the input characters string length.

If the stopIndex is bigger or equal to the actual input characters string length then it is set

to be equal to the input characters string length.

If the startIndex and the stopIndex are equal then an empty character string is returned.

9.3.19 Extract

Prototype: String Extract(String input,string from, string to)

This operation returns the string that is between the first occurrence of the from string and

the last occurrence of the to string.

If the from string is not found, the entire beginning of the string is extracted up to the to

string. If the to string is not found, the string is extracted up to the end of the input string.

9.4 Import-Export

The Data Editing feature offers a way to import or export Data Editing profiles. The

Import-Export profiles format is done using a set of XML tags.

The import will merge the imported profiles into the current profiles. An error is

generated if at least one profile name is identical to a name already present in ScanAPI.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 51/184

9.4.1 API

The property kSktScanPropIdDataEditingImportExport imports or exports the Data

Editing profiles.

A list of profile names must be specified to export the profiles. If a profile name doesnôt

match with an actual profile, it is ignored.

Refer to the Properties paragraph for more information about this property.

9.4.2 XML Format

The import/export is using an XML format in order to define one or more Data Editing

profiles.

The first XML tag is DataEditing and it contains all the profiles. It has one attribute to

sepecify the version of ScanAPI interface. This ScanAPI interface version can be

retrieved with the property kSktScanPropIdVersion. Refer to the property paragraph for

more information about this property.

The version is important because the Data Editing profile can be save into a file for

importing profile into a different host. If this different host has a less recent version of

ScanAPI, some of the commands might not be available. The import operation checks if

the version specified in the Data Editing attribute is less than or equal to the current

ScanAPI interface version. If ScanAPI has an older version the Data Editing import will

fail with an error.

NOTE: The ScanAPI Interface version is a different version then the ScanAPI Version.

The interface version changes each time a new API or Data Editing Operation is added or

removed.

The profile is nested in the Profile XML tag. The attribute Value of this Profile tag

contains the name of the profile.

There are 2 tags nested in the Profile tag: Trigger and Operation.

The Trigger tag also nests all the trigger parameter tags that are defined as follow:

The Symbology tag that contains an attribute Value to holds the semi-colon list of

Symbologies the decoded data can be in order to apply the Data Editing operation.

The MinLength and MaxLength tags that contain an attribute Value to hold respectively

the minimum length and maximum length a Decoded Data must be in order to trigger the

Data Editing operation.

The StartsWith and EndsWith tags that contain an attribute Value to hold respectively the

string the Decoded Data must start with and end with in order to trigger the Data Editing

operation.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 52/184

The Contains tag that contains an attribute Value to hold the string the Decoded Data

must have in order to trigger the Data Editing operation.

The Profile tag nests the Operation tag that doesnôt nest any other tag. It has an attribute

Value that holds the Data Editing operations.

Here is an example of 2 profiles being exported ñdriverò and ñprefix-suffixò:

<DataEditing ScanAPIInterfaceVersion="1.0.1">

<Profile Value="driver">

<Trigger>

<Symbology Value="Pdf417"/>

<MinLength Value=""/>

<MaxLength Value=""/>

<StartsWith Value=""/>

<EndsWith Value=""/>

<Contains Value=""/>

</Trigger>

<Operation

Value="{}{ReplaceNonPrintableCharacters({Extract({DecodedData()},DCT,DBD)},

)}{Extract({DecodedData()},DCS,DCT)}{Extract({DecodedData()},DAG,DAI)}{Repla

ceNonPrintableCharacters({Extract({DecodedData()},DAI,DAJ)},

)}{ReplaceNonPrintableCharacters({Extract({DecodedData()},DAJ,DAK)},

)}{Extract({DecodedData()},DAK,DAQ)}"/>

</Profile>

<Profile Value="prefix-suffix">

<Trigger>

<Symbology Value="Code128;Code93"/>

<MinLength Value="11"/>

<MaxLength Value="14"/>

<StartsWith Value="12"/>

<EndsWith Value=""/>

<Contains Value="SP"/>

</Trigger>

<Operation

Value="{} PPP{TruncateFromBeginning({DecodedData()},{FindFirstFromIndex({Decod

edData()},0,*,-333)})}SSS"/>

</Profile>

</DataEditing>

10 Specific scanner configurations
Most of the common configurations of a scanner are accessible through the
properties exposed by ScanAPI.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 53/184

Some specific settings can be configured through the use of the
kSktScanPropIdDeviceSpecific property.

The parameters of this property are specific by Scanner model. For example a
ÓÅÔÔÉÎÇ ÔÈÁÔ ×ÏÒËÓ ÆÏÒ Á χ#Éȟ ×ÏÎȭÔ ×ÏÒË ÆÏÒ Á χ8ÉȢ

10.1 Adaptive Scanning

The adaptive scanning process uses a range finder to provide feedback on how far
away a bar code is when scanning, and automatically optimizes parameters to
improve decode performance. These parameters include bandwidth, receiver gain,
digitizer settings, and scan angle; however scan angle is the only noticeable
parameter controlled.

When the bar code reaches a certain distance from the engine (approximately 30
inches), the engine automatically reduces the scan angle to narrow (10°). (The
exception is highly reflective bar codes, which may not cause the scan engine to
switch to the narrow angle). However, if the scan line is not touching a bar code, the
engine may switch to the narrow scan angle at a much shorter distance. This
improves decode range on certain bar codes. This feature can be disabled and the
user can select narrow, medium, or wide angle only, depending on application
needs.

This feature is supported only by the CHS 7Mi and 7Pi (1D Laser scanners) RevC and
higher.

The following table shows the content of the kSktScanPropIdDeviceSpecific
property bytes array:

Byte index Value Description
0 0x08 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0xF2 First byte of the parameter ID for Adaptive Scanning
6 0x51 Second byte of the parameter ID for Adapative Scanning
7 0x01 0x01: for enabling the feature and 0x00 for disabling it.

10.2 Scan Angle

The scan Angle can be changed to be narrower or wider. This feature is only
available in the CHS 7Mi and 7Pi 1D Laser scanners.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 54/184

The following table shows the content of the kSktScanPropIdDeviceSpecific
property bytes array:

Byte index Value Description
0 0x07 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0xBF The parameter ID for Scan Angle
6 0x00 πØππ ÆÏÒ ρπȍ ÁÎÇÌÅȟ πØπρ ÆÏÒ συȍ ÁÎÄ πØπς ÆÏÒ τχȍ

10.3 Code 39 Length configuration

The decoded data length can be specified when scanning a Code 39 barcode.
This feature is also different from one scanner model to another.
For the 7Ci, 7Mi, 7Pi, 8Ci, 8Qi series:
There are 4 modes possible,

Only one discreet length (L1):

Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x12 The parameter ID for Length 1
6 0x0D The length value for L1
7 0x13 The parameter ID for Length 2
8 0x00 The length value for L2 ɀ must be 0x00 for 1 Discreet

Two discreet lengths (L1 and L2):
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x12 The parameter ID for Length 1
6 0x0D The length value for L1 must be bigger than second discreet

length L2
7 0x13 The parameter ID for Length 2

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 55/184

8 0x06 The length value for L2 must be smaller than first discreet
length L1

Any decoded data that is included in the length range:
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x12 The parameter ID for Length 1
6 0x04 The length value for L1 must be smaller than the second

length L2
7 0x13 The parameter ID for Length 2
8 0x10 The length value for L2 must be greater than the first length

L1

Any length barcode is decoded (may result in misreads):
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x12 The parameter ID for Length 1
6 0x00 Must be zero for any length read
7 0x13 The parameter ID for Length 2
8 0x00 Must be zero for any length read

For the 7Xi/7Qi series:
The 7Xi/Qi series offers three possible Lengths, L1, L2 and L3. There is a Length
mode that tells the scanner how to use these length variables. There are 3 length
modes possible; L1 as minimum length, L1, L2 and L3 as three fixed lengths and the
last mode is L1 as minimum length and L2 as maximum length. First the Length
Mode should be set, and then all 3 lengths should be set.

Here is the following sequence of bytes that need to be sent through the device
specific property to configure the Length mode:

Byte index Value Description
0 0x41 Operation: Setup Write
1 0x42 Group ID: Code 39
2 0x53 Function ID: Length Mode

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 56/184

3 0x00 Value: 0x00 L1 as minimum, 0x01 L1 L2 L3 as 3 fixed lengths,
0x02 L1 as minimum length and L2 as maximum length.

The following table shows the sequences of bytes for configuring the 3 lengths
according to the length mode:

Byte index Value Description
0 0x41 Operation: Setup Write
1 0x42 Group ID: Code 39
2 0x50 Function ID: 0x50 for Length L1, 0x51 for Length L2 and

0x52 for Length L3
3 0x0C Value to be set to the corresponding Length (L1 or L2 or L3)

NOTE: when Length mode and L1, L2 and L3 are all set to 0, it means that any length
of Code 39 barcode is decoded.

10.4 Interleaved 2 of 5 Length configuration

The decoded data length can be specified when scanning an Interleaved 2 of 5
barcode.
This feature is also different from one scanner model to another.
For the 7Ci, 7Mi, 7Pi, 8Ci, 8Qi series:
There are 4 modes possible,

Only one discreet length (L1):
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x16 The parameter ID for Length 1
6 0x0D The length value for L1
7 0x17 The parameter ID for Length 2
8 0x00 The length value for L2 ɀ must be 0x00 for 1 discreet

Two discreet lengths (L1 and L2):
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 57/184

5 0x16 The parameter ID for Length 1
6 0x0D The length value for Length 1, must be higher than the

Length 2 value
7 0x17 The parameter ID for Length 2
8 0x06 The length value for Length 2, must be lower than the Length

1 value

Any decoded data that is included in the length range:
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x16 The parameter ID for Length 1
6 0x04 The length value for L1 must be smaller than the second

length L2
7 0x17 The parameter ID for Length 2
8 0x10 The length value for L2 must be greater than the first length

L1

Any decoded data length (may result in misreads):
Byte index Value Description
0 0x09 Length of the command including this byte.
1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x16 The parameter ID for Length 1
6 0x00 Must be zero for any length
7 0x17 The parameter ID for Length 2
8 0x00 Must be zero for any length

For the 7Xi/7Qi series:
The 7Xi/Qi series offers three possible Lengths, L1, L2 and L3. There is a Length
mode that tells the scanner how to use these length variables. There are 3 length
modes possible; L1 as minimum length, L1, L2 and L3 as three fixed lengths and the
last mode is L1 as minimum length and L2 as maximum length. First the Length
Mode should be set, and then all 3 lengths should be set.

Here is the following sequence of bytes that need to be sent through the device
specific property to configure the Length mode:

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 58/184

Byte index Value Description
0 0x41 Operation: Setup Write
1 0x44 Group ID: Interleaved 2 of 5
2 0x53 Function ID: Length Mode
3 0x00 Value: 0x00 L1 as minimum, 0x01 L1 L2 L3 as 3 fixed lengths,

0x02 L1 as minimum length and L2 as maximum length.

The following table shows the sequences of bytes for configuring the 3 lengths
according to the length mode:

Byte index Value Description
0 0x41 Operation: Setup Write
1 0x44 Group ID: Interleaved 2 of 5
2 0x50 Function ID: 0x50 for Length L1, 0x51 for Length L2 and

0x52 for Length L3
3 0x0C Value to be set to the corresponding Length (L1 or L2 or L3)

NOTE: when Length mode and L1, L2 and L3 are all set to 0, it means that any length
of Interleaved 2 of 5 barcode is decoded.

10.5 UPCA format

The 7Xi/Qi scanner will transmit UPCA as EAN13 by default, which means that the

barcode will include a leading country code (0 for USA). This behavior can be changed

to transmit the UPCA code as a UPCA code (no leading country code) with the

kSktScanPropIdDeviceSpecific property

The following table shows the content of the kSktScanPropIdDeviceSpecific
property bytes array:

Byte index Value Description
0 0x41 Operation: Setup Write
1 0x4B Group ID: UPC/EAN
2 0x5A Function ID: UPCA Transmitted as EAN13
3 0x00 Value: 0x00 disabled, 0x01 Enabled(default)

 On the CHS 7Ci/7Di/7Mi/7Pi and CHS 8Ci/8Qi , the UPCA format is controlled by
enabling or disabling the Preamble.

The following table shows the content of the kSktScanPropIdDeviceSpecific
property bytes array:

Byte index Value Description
0 0x07 Length of the command including this byte.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 59/184

1 0xC6 Set Parameter Opcode
2 0x04 Status: always 0x04 for Host
3 0x00 Flags: always 0x00
4 0xFF Beep code: Not used, always 0xFF
5 0x22 The parameter ID for UPCA Preamble
6 0x00 0x00 for no Preamble (Data only), 0x01 for <System

Character><Data>, and 0x02 for <CountryCode><System
Character><Data>

11 API Functions
The ScanAPI has 6 entry points: Open, Close, Get, Set, Wait and Release.

They all use a reference to either a ScanAPI object or a Device object. These
references are represented differently depending on the programming language
used.

For C/C++ language this reference is represented as SKTHANDLE. This handle is
initialized during the open function and invalidated after calling the close function.

For Java and C#, this reference is an interface. There are 2 interfaces, one for each
object it represents; ISktScanApi for representing a ScanAPI object and
ISktScanDevice for representing a Device object. The ISktScanApi interface is a
superset of the ISktScanDevice.

Objective C uses the same concept and same name except it is called protocol
instead of interface.

A request to get these interfaces instantiated can be made by using the
SktClassFactory, ie: ISktScanApi scanApi=SktClassFactory.createScanApiInstance();
Or in Objective C:
Id<ISktScanApi> scanApi=[SktClassFactory createScanApiInstance];

Having an interface or protocol instance is not enough to use the object it
represents. The open must be invoked to initialize the object, and the close will
invalidate the object.

11.1 Open Function

The Open function opens either ScanAPI object or a Device object.

ScanAPI object
In order to open a ScanAPI object, the device name should be set to NULL.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 60/184

The first open of a ScanAPI object initializes the ScanAPI layer and starts the process
of listening for device connections.

Once this open is successful the application can use this ScanAPI object reference to
call the wait API in its consumer logic.

If, for some reason, ScanAPI layer cannot open the Bluetooth serial ports indicated
in its configuration, an error will be sent to the application through a ScanObject
with the Message ID set to Event Message ID.

By using the special ScanAPI No Listener GUID of Ȱɑρρ$τχ&σφ-BE62-4D28-9177-
ψω&ρ"&σ$$$τ"ɒȱȟ ÔÈÉÓ !0) ×ÉÌÌ ÒÅÔÕÒÎ Á ÈÁÎÄÌÅ ÔÏ Á 3ÃÁÎ!0) ÏÂÊÅÃÔ ÔÈÁÔ ×ÏÎȭÔ ÈÁÖÅ
a listener thread and that can be used for editing the ScanAPI configuration. All
platforms include a define for the No Listener GUID as follows:
Java: ISktScanApi.SKTSCANAPI_CONFIGURATOR_GUID
C#: ISktScanApi.SKTSCANAPI_CONFIGURATOR_GUID
C++/ObjectiveC: SKTSCANAPI_CONFIGURATOR_GUID

Device object
In order to open a device object, the device GUID should be specified as the device
name parameter of the open API. The device GUID is retrieved from the device
arrival notification event.

The application will start to receive device asynchronous events as soon as it opens
the device object.

11.1.1 Syntax

C/C++ :
SKTRESULT SktScanOpen(

const char* pszDeviceName,
SKTHANDLE* phDevice
);

pszDeviceName

[in] the scanner device GUID in a string format to open a device or NULL to
open ScanAPI object or the No Listener GUID of
SKTSCANAPI_CONFIGURATOR_GUID.

phDevice
[out] pointer to receive the reference of the Device object or ScanAPI object.

C#:

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 61/184

long ISktScanApi.Open(
 String deviceName
);

deviceName:
 [in] usually set to NULL in order to open ScanAPI object or it could be set to
ISktScanApi. SKTSCANAPI_CONFIGURATOR_GUID to open ScanAPI object without a
listener thread. This last case is mostly used to edit a ScanAPI configuration without
conflicting with another application using ScanAPI.

long ISktScanDevice.Open(

String deviceName
);

deviceName

[in] t he scanner device GUID in a string to open a device.

Java:
long ISktScanApi.Open(
 String deviceName
);

deviceName:
 [in] usually set to NULL in order to open ScanAPI object or it could be set to
ISktScanApi. SKTSCANAPI_CONFIGURATOR_GUID to open ScanAPI object without a
listener thread. This last case is mostly used to edit a ScanAPI configuration without
conflicting with another application using ScanAPI.

long ISktScanDevice.Open(

String deviceName
);

deviceName
[in] the scanner device GUID as a string to open a particular device. This
device GUID can be retrieved from the Device Arrival message event.

Objective C:
-(SKTRESULT) open: (NSString*)deviceName;
of the protocol ISktScanApi.

deviceName:
 [in] usually set to NULL in order to open ScanAPI object or it could be set to
SKTSCANAPI_CONFIGURATOR_GUID to open ScanAPI object without a listener
thread. This latter case is used to edit a ScanAPI configuration without conflicting
with another application using ScanAPI.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 62/184

Same message prototype for a device but this time from the protocol
ISktScanDevice.
-(SKTRESULT) open: (NNString*) deviceName;

deviceName:

[in] the scanner device GUID as a string to open a particular device. This
device GUID can be retrieved from the Device Arrival message event.

11.1.2 Return value

If the function succeeds the return value is ESKT_NOERROR.

11.1.3 Remarks

A close call should be done for each object that has been previously opened

If the open function is called more than once, it increases the reference count of the
object it opens. The same number of closes should be made in order to completely
close the object.

11.1.4 Example

C/C++:
 SKTHANDLE hScanAPI=NULL;
 SKTRESULT result=SktScanOpen(NULL,&hScanAPI);
 if(SKTSUCCESS(result))
 {
 // do whatever needs to be done
 ...
 }

Java or C#:
 ISktScanApi _ScanApi=null ;

_ScanApi=SktClassFactory.createScanApiInstance();
 long result=_scanApi.Open(null);
 if (SktScanErrors.SKTSUCCESS(result))
 {
 // do whatever needs to be done
 }

Objective C:

SKTRESULT Result=ESKT_NOERROR;
id<ISktScanApi> scanApi=nil ;
scanApi=[SktClassFactory createScanApiInstance];
Result=[scanApi open:nil];
if(SKTSUCCESS(Result)){

// do whatever needs to be done
}

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 63/184

See also:
Sample handling asynchronous events of ScanAPI

11.1.5 Function I nformation

C/C++
Header SktScanAPI.h, include SktScanErrors.h,

SktScanTypes.h
Import library ScanAPI.lib
Minimum operating systems Windows XP, Windows Mobile 5.0
C#
Reference ScanAPIManaged.dll for Windows or

ScanAPIManagedWM.dll for Windows
Mobile

Minimum operating systems Windows XP, Windows Mobile 5.0
Java
Import com.SocketMobile.ScanAPI.ISktScanApi

com.SocketMobile.ScanAPI.SktClassFactory
Jar File ScanAPIFactory.jar

ScanAPI.jar
Minimum operating system Android 2.1
Objective C
Import SktScanApi.h

ScanApi.h
Framework libScanAPI.a

ExternalAccessory.framework
Minimum operating system iOS 6.1

11.1.6 See Also

Close Function

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 64/184

11.2 Close Function

This function closes ether a ScanAPI object or a Device object.

11.2.1 Syntax

C/C++:
SKTRESULT SktScanClose(

SKTHANDLE hDevice
);

hDevice
 [in] Handle to the scanner device or ScanAPI to close.

Java or C#:
long ISktScanDevice.Close(); or
long ISktScanApi.Close();

Objective C:
-(SKTRESULT) close;
From the protocol ISktScanApi or ISktScanDevice.

11.2.2 Return Value

If the function succeeds it returns ESKT_NOERROR.

11.2.3 Remarks

Any pending operation attached to this device will be aborted.

Once the object is closed, any subsequent operation using this handle will return an
error of invalid handle.

11.2.4 Example

See Sample handling asynchronous events of ScanAPI

11.2.5 Function Information

C/C++
Header SktScanAPI.h, include SktScanErrors.h,

SktScanTypes.h
Import library ScanAPI.lib
Minimum operating systems Windows XP, Windows Mobile 5.0
C#

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 65/184

Reference ScanAPIManaged.dll for Windows or
ScanAPIManagedWM.dll for Windows
Mobile

Minimum operating systems Windows XP, Windows Mobile 5.0
Java
Import com.SocketMobile.ScanAPI.ISktScanApi

com.SocketMobile.ScanAPI.SktClassFactory
Jar File ScanAPIFactory.jar

ScanAPI.jar
Minimum operating system Android 2.1
Objective C
Import SktScanApi.h

ScanApi.h
Framework libScanAPI.a

ExternalAccessory.framework
Minimum operating system iOS 6.1

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 66/184

11.3 Set Function

The Set function sets a property of an object identified by its reference. This function
returns immediately before the property set is actually done. The final status should
be checked using the Wait function.

11.3.1 Syntax

C/C++:
SKTRESULT SktScanSet(

SKTHANDLE hDevice,
TSktScanObject * pSktObj
);

hDevice
 [in] handle of the device.

pSktObj

[in] pointer to an allocated TSktScanObject that contains the property and its
value to set.

Java or C#:
long ISktScanDevice.SetProperty(

ISktScanObject scanObj
);

Or
Long ISktScanApi.SetProperty(
 ISktScanObject scanObj
);

scanObj

[in] reference to a ScanObject that contains the property and its value to set.
The ScanObject should be created using the
SktClassFactory.createScanObject().

Objective C:
-(SKTRESULT) setProperty: (id<ISktScanObject>) scanObj;
From the ISktScanApi or ISktScanDevice protocol.

scanObj

[in] reference to a ScanObject that contains the property and its value to set.
The ScanObject should be created using the [SktClassFactory
createScanObject] message. Once this object is no longer useful it should be
freed by using the message releaseScanObject of the same class,
[SktClassFactory releaseScanObject:scanObject];

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 67/184

11.3.2 Return Value

If the function succeeds it returns ESKT_NOERROR.

The return value is ESKT_INVALIDHANDLE if the object reference is invalid.

If the function is called before the completion of an outstanding set or get operation,
it returns ESKT_PENDINGOPERATIONNOTCOMPLETED.

11.3.3 Remarks

The Set function allows an application to set a property of a scanner or ScanAPI, or
to send a command such as triggering a scan.

The ScanObject contains a property structure that defines the property to set. This
structure has a property ID field, a property type field and a value field. These fields
must be set accordingly to the property otherwise an error code will be returned.

In the success case, it will always return the completion code in the ScanObject that
must be retrieved with Wait function.

The Set function will fail if it is called before the completion of a previous Set
function or Get function.

11.3.4 Example

C/C++:
void CMyAppDlg:OnTriggerButton()
{
 SKTRESULT Result=ESKT_NOERROR;

 TSktScanObject ScanObj;
 memset(&ScanObj,0,sizeof(ScanObj));
 // initialize a ScanObject to
 // trigger the device
 ScanObj.Property.ID=kSktScanPropIdTriggerDevice;
 ScanObj.Property.Type=kSktScanPropTypeByte;
 ScanObj.Property.Byte=kSktScanTriggerStart;

 // set the property with the
 // device handle
 Result=SktScanSet(m_hDevice,&ScanObj);

 // check the Set result
 if(SKTSUCCESS(Result))
 m_TriggerBtn.Enable(FALSE);
 else
 {
 // display an error message
 DisplayError(_T("Unable to trigger: %d"),Result);
 }
}

Java:

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 68/184

// handler for the Trigger button
class TriggerButtonHandler implements Runnable {
 private ISktScanDevice _device=null ;
 private ButtonField _button;

 // constructor
 public TriggerButtonHandler(
 ISktScanDevice device,
 ButtonField button)
 {
 _device=device;
 _button=button;
 }

 public void run() {

 // create a ScanObject instance
 ISktScanObject scanObj=
 SktClassFactory.createScanObject();

 // Initialize a ScanObject to
 // Trigger the device
 ISktScanProperty property=
 scanObj.getProperty();

 property.setID(
 ISktScanProperty.propId.
 kSktScanPropIdTriggerDevice);

 property.setType(
 ISktScanProperty.types.
 kSktScanPropTypeByte);

 property.setByte(
 ISktScanProperty.values.trigger.
 kSktScanTriggerStart);

 // set the property with the device
 // reference
 long result=_device.SetProperty(scanObj);

 // che ck the set result
 if (SktScanErrors.SKTSUCCESS(result)){
 _button.setVisualState(VISUAL_STATE_DISABLED);
 }
 else
 {
 // display an error message
 DisplayError("Unable to trigger: "+result);
 }
 }

}

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 69/184

C#:
 private void buttonTrigger_Click(object sender, EventArgs e)
 {
 // create a ScanObject instance
 ISktScanObject scanObj =
 SktClassFactory.createScanObject();

 // Initialize a ScanObject to
 // Trigger the device
 scanObj.Property.ID =
 ISktScanProperty.propId.kSktScanPropIdTriggerDevice;

 scanObj.Property.Type =
 ISktScanProperty.types.kSktScanPropTypeByte;

 scanObj.Property.Byte =
 ISktScanProperty.values.trigger.kSktScanTriggerStart;

 // set the property with the device
 // reference
 long result = _device.SetProperty(scanObj);
 if (SktScanErrors.SKTSUCCESS(result))
 {
 buttonTrigger.Enabled = false;
 }
 else
 {
 // display an error message
 DisplayError("Unable to trigger: " + result);
 }
 }

Objective C:

// handler for the Trigger bu tton
-(void) triggerAction:(id)sender{
 SKTRESULT Result=ESKT_NOERROR;
 id<ISktScanObject>scanObj=nil ;

 scanObj=[SktClassFactory createScanObject];

 // fill out the Scan Object property to trigger the
 // device
 [[scanObj Property]setID:kSktScanPropIdTriggerDevice];
 [[scanObj Property]setType:kSktScanPropTypeByte];
 [[scanObj Property]setByte:kSktScanTriggerStart];

 // send the Set property message
 Result=[_scanapi setProperty:scanObj];

 // release the scanObj as it is not needed anymore
 [SktClassFactory releaseScanObject:scanObj];

 if (!SKTSUCCESS(Result)){
 [self DisplayErrorMessage:@"Unable to trigger the device"];
 }

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 70/184

}

11.3.5 Function Information

C/C++
Header SktScanAPI.h, include SktScanErrors.h,

SktScanTypes.h
Import library ScanAPI.lib
Minimum operating systems Windows XP, Windows Mobile 5.0
C#
Reference ScanAPIManaged.dll for Windows or

ScanAPIManagedWM.dll for Windows
Mobile

Minimum operating systems Windows XP, Windows Mobile 5.0
Java
Import com.SocketMobile.ScanAPI.ISktScanApi

com.SocketMobile.ScanAPI.SktClassFactory
Jar File ScanAPIFactory.jar

ScanAPI.jar
Minimum operating system Android 2.1
Objective C
Import SktScanApi.h

ScanApi.h
Framework libScanAPI.a

ExternalAccessory.framework
Minimum operating system iOS 6.1

11.3.6 See Also

Get Function, Wait Function

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 71/184

11.4 Get Function

The Get function retrieves a property from ScanAPI object or from a device object
identified by its reference. This function returns immediately, and its final result
should be checked by using Wait function.

11.4.1 Syntax

C/C++:
SKTRESULT SktScanGet(

SKTHANDLE hDevice,
TSktScanObject* pSktObj
);

hDevice
 [in] Handle to the device the property must be retrieved from.

pSktObj

[in] Pointer to a TSktScanObject that contains the property ID that needs to
be retrieved.

Java or C#:
long ISktScanDevice.GetProperty(

ISktScanObject scanObj
);

scanObj

[in] reference to a ScanObject that contains the property ID that needs to be
retrieved. The ScanObject should be created using the
SktClassFactory.createScanObject().

Objective C:
-(SKTRESULT) getProperty: (id<ISktScanObject>) scanObj;
From the ISktScanApi or ISktScanDevice protocol.

scanObj

[in] reference to a ScanObject that contains the property to get. The
ScanObject should be created using the [SktClassFactory createScanObject]
message. Once this object is no longer useful it should be freed using the
message releaseScanObject of the same class, [SktClassFactory
releaseScanObject:scanObject];

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 72/184

11.4.2 Return Value

If the function succeeds it returns ESKT_NOERROR.

The return value is ESKT_INVALIDHANDLE if the object reference is invalid.

If the function is called before the completion of an outstanding set or get operation,
it returns ESKT_PENDINGOPERATIONNOTCOMPLETED.

11.4.3 Remarks

This function returns immediately. In the success case, it will always return the
completion code in the ScanObject that must be retrieved with Wait function. The
Wait function returns the ScanObject structure with the Property field filled with the
result of the operation if it has been successful. The success code can be retrieved
from that same structure in the Result field.

11.4.4 Example

C/C++:

// Get device friendly name
SKTRESULT GetFriendlyName(
 IN SKTHANDLE hDevice,
)
{
 SKTRESULT Result=ESKT_NOERROR;

 TSktScanObject ScanObj;
 memset(&ScanObj,0,sizeof(ScanObj);

 ScanObj.Property.ID=kSktScanPropIdFriendlyNameDevice;
 ScanObj.Property.Type=kSktScanPropTypeNone;

 // get the friendly name here
 // the final result should be fetched
 // in the Get Complete handler
 Result=SktScanGet(hDevice,&ScanObj);

 return Result;
}

Java or C#:

 // get device friendly name
 long GetFriendlyName(ISktScanDevice device)
 {
 long result=SktScanErrors.ESKT_NOERROR;
 ISktScanObject scanObj;
 scanObj=SktClassFactory.createScanObject();

 ISktScanProperty property;
 property=scanObj.getProperty();
 property.setID(ISktScanProperty.propId.

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 73/184

 kSktScanPropIdFriendlyNameDevice);
 property.setType(ISktScanProperty.types.
 kSktScanPropTypeNone);

 // get the friendly name here
 // the final result should be fetched
 // in the get complete handler
 result=device.GetProperty(scanObj);
 return result;
 }

Objective C:

// Get the device friendly name
-(SKTRESULT)GetFriendlyName{
 SKTRESULT Result=ESKT_NOERROR;
 id<ISktScanObject>scanObj=nil ;

 // create a Scan Object
 scanObj=[SktClassFactory createScanObject];

 // fill out the Scan Object property to query the
 // device friendly name
 [[scanObj Property]setID:kSktScanPropIdFriendlyNameDevice];
 [[scanObj Property]setType:kSktScanPropTypeNone];

 // send the Get property message
 Result=[_scanapi getProperty:scanObj];

 // release the scanObj as it is not needed anymore
 [SktClassFactory releaseScanObject:scanObj];

 return Result;
}

11.4.5 Function Information

C/C++
Header SktScanAPI.h, include SktScanErrors.h,

SktScanTypes.h
Import library ScanAPI.lib
Minimum operating systems Windows XP, Windows Mobile 5.0
C#
Reference ScanAPIManaged.dll for Windows or

ScanAPIManagedWM.dll for Windows
Mobile

Minimum operating systems Windows XP, Windows Mobile 5.0
Java
Import com.SocketMobile.ScanAPI.ISktScanApi

com.SocketMobile.ScanAPI.SktClassFactory

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 74/184

Jar File ScanAPIFactory.jar
ScanAPI.jar

Minimum operating system Android 2.1
Objective C
Import SktScanApi.h

ScanApi.h
Framework libScanAPI.a

ExternalAccessory.framework
Minimum operating system iOS 6.1

11.4.6 See Also

Set Function, Wait Function

Socket ScanAPI Reference

© 2014 Socket Mobile, Inc. 75/184

11.5 Wait Function

The Wait function waits for any asynchronous events. Only a ScanAPI object can be
used as reference for the wait function.

Most of the time, applications using ScanAPI, use a timer to consume the ScanAPI
asynchronous events. In this case, the wait function can be called with 0 as timeout
so that it returns immediately with timeout result if there is no ScanObject or with
no error result if it has retrieved a ScanObject.

11.5.1 Syntax

C/C++:

SKTRESULT SktScanWait(
 SKTHANDLE hScanAPI,

TSktScanObject** ppSktObj,
DWORD dwTimeout
);

hScanAPI

[in] handle to ScanAPI object. This handle cannot be a handle of a scanner
device. If thi s handle is not a ScanAPI object, this function will return an
invalid handle error.

ppSktObj
[out] pointer to a TSktScanObject pointer. TSktScanObject is allocated by
ScanAPI. This object must be released when it is no longer needed.

dwTimeout

[in] a ti meout value expressed in milliseconds. The timeout cannot be bigger
than 10000ms otherwise an error will be returned.

Java:

long ISktScanApi.WaitForScanObject(

ISktScanObject[] scanObj,
long ulTimeout
);

scanObj

[out] reference to a ScanObject that is allocated by ScanAPI. This object must
be released when it is no longer needed.

ulTimeout

